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Abstract

The spatial distribution and time course of electrical signals in neurons have
important theoretical and practical consequences. Because it is difficult to infer
how neuronal form affects electrical signaling, we have developed a quantitative
yet intuitive approach to the analysis of electrotonus. This approach transforms
the architecture of the cell from anatomical to electrotonic space, using the
logarithm of voltage attenuation as the distance metric. We describe the theory
behind this approach and illustrate its use.
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1 INTRODUCTION

The fields of computational neuroscience and artificial neural nets have enjoyed a mutually
beneficial exchange of ideas. This has been most evident at the network level, where concepts
such as massive parallelism, lateral inhibition, and recurrent excitation have inspired both the
analysis of brain circuits and the design of artificial neural net architectures.

Less attention has been given to how properties of the individual neurons or processing elements
contribute to network function. Biological neurons and brain circuits have been simultaneously
subject to eons of evolutionary pressure. This suggests an essential interdependence between
neuronal form and function, on the one hand, and the overall architecture and operation of
biological neural nets, on the other. Therefore reverse-engineering the circuits of the brain
appears likely to reveal design principles that rely upon neuronal properties. These principles
may have maximum utility in the design of artificial neural nets that are constructed of
processing elements with greater similarity to biological neurons than those which are used in
contemporary designs.

Spatiotemporal extent is perhaps the most obvious difference between real neurons and
processing elements. The processing element of most artificial neural nets is essentially a point
in time and space. Its activation level is the instantaneous sum of its synaptic inputs. Of
particular relevance to Hebbian learning rules, all synapses are exposed to the same activation
level. These simplifications may insure analytical and implementational simplicity, but they
deviate sharply from biological reality. Membrane potential, the biological counterpart of
activation level, is neither instantaneous nor spatially uniform. Every cell has finite membrane
capacitance, and all ionic currents are finite, so membrane potential must lag behind synaptic
inputs. Furthermore, membrane capacitance and cytoplasmic resistance dictate that membrane
potential will almost never be uniform throughout a living neuron embedded in the circuitry of
the brain. The combination of ever-changing synaptic inputs with cellular anatomical and
biophysical properties guarantees the existence of fluctuating electrical gradients.

Consider the task of building a massively parallel neural net from processing elements with such
"nonideal" characteristics. Imagine moreover that the input surface of each processing element is
an extensive, highly branched structure over which approximately 10,000 synaptic inputs are
distributed. It might be tempting to try to minimize or work around the limitations imposed by
device physics. However, a better strategy might be to exploit the computational consequences
of these properties by making them part of the design, thereby turning these apparent weaknesses
into strengths.

To facilitate an understanding of the spatiotemporal dynamics of electrical signaling in neurons,
we have developed a new theoretical approach to linear electrotonus and a new way to make
practical use of this theory. We present this method and illustrate its application to the analysis
of synaptic interactions in hippocampal pyramidal cells.
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2 THEORETICAL BACKGROUND

Our method draws upon and extends the results of two prior approaches: cable theory and two-
port analysis.

2.1 CABLE THEORY

The modern use of cable theory in neuroscience began almost four decades ago with the work of
Rall (1977). Much of the attraction of cable theory derives from the conceptual simplicity of the

steady-state decay of voltage with distance along an infinite cylindrical cable:V x V e x( ) = −
0

λ

wherex is physical distance andλ is the length constant. This exponential relationship makes it
useful to define the electrotonic distanceX as the logarithm of the signal attenuation:
X V V x= ln ( )0 . In an infinite cylindrical cable, electrotonic distance is directly proportional to
physical distance:X x= λ .

However, cable theory is difficult to apply to real neurons since dendritic trees are neither infinite
nor cylindrical. Because of their anatomical complexity and irregular variations of branch
diameter and length, attenuation in neurons is not an exponential function of distance. Even if a
cell met the criteria that would allow its dendrites to be reduced to a finite equivalent cylinder
(Rall 1977), voltage attenuation would not bear a simple exponential relationship toX but instead
would vary inversely with a hyperbolic function (Jack et al. 1983).

2.2 TWO-PORT THEORY

Because of the limitations and restrictions of cable theory, Carnevale and Johnston (1982) turned
to two-port analysis. Among their conclusions, three are most relevant to this discussion.
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Figure 1: Attenuation is direction-dependent.

The first is that signal attenuation depends on the direction of signal propagation. Suppose thati
and j are two points in a cell wherei is "upstream" fromj (voltage is spreading fromi to j), and

define the voltage attenuation fromi to j: A V Vij
V

i j= . Next suppose that the direction of signal

propagation is reversed, so thatj is now upstream fromi, and define the voltage attenuation

A V Vji
V

j i= . In general these two attenuations will not be equal:A Aij
V

ji
V≠

They also showed that voltage attenuation in one direction is identical to current attenuation in
the opposite direction (Carnevale and Johnston 1982). Suppose currentIi enters the cell ati, and
the current that is captured by a voltage clamp atj is I j , and define the current attenuation
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A I Iij
I

i j= . Because of the directional reciprocity between current and voltage attenuation,

A Aij
I

ji
V= . Similarly, if we interchange the current entry and voltage clamp sites, the current

attenuation ratio would beA Aji
I

ij
V= .

Finally, they found that charge and DC current attenuation in the same direction are identical
(Carnevale and Johnston 1982). Therefore the spread of electrical signals between any two
points is completely characterized by the voltage attenuations in both directions.

2.3 THE ELECTROTONIC TRANSFORMATION

The basic idea of the electrotonic transformation is to remap the cell from anatomical space into
"electrotonic space," where the distance between points reflects the attenuation of an electrical
signal spreading between them. Because of the critical role of membrane potential in neuronal
function, it is usually most appropriate to deal with voltage attenuations.

2.3.1 The Distance Metric

We use the logarithm of attenuation between points as the distance metric in electrotonic space:
L Aij ij= ln (Brown et al. 1992, Zador et al. 1991). To appreciate the utility of this definition,

consider voltage spreading from pointi to point j, and suppose thatk is on the direct path

between i and j. The voltage attenuations areA V Vik
V

i k= , A V Vkj
V

k j= , and

A V V A Aij
V

i j ik
V

kj
V= = . This last equation and our definition ofL establish the additive property of

electrotonic distanceL L Lij ik jk= + . That is, electrotonic distances are additive over a path that

has a consistent direction of signal propagation. This justifies using the logarithm of attenuation
as a metric for the electrical separation between points in a cell.

At this point several important facts should be noted. First, unlike the electrotonic distanceX of
classical cable theory, our new definition of electrotonic distanceL always bears a simple and
direct logarithmic relationship to attenuation. Second, because of membrane capacitance,
attenuation increases with frequency. Since both steady-state and transient signals are of interest,
we evaluate attenuations at several different frequencies. Third, attenuation is direction-
dependent and usually asymmetric. Therefore at every frequency of interest, each branch of the
cell has two different representations in electrotonic space depending on the direction of signal
flow.

2.3.2 Representing a Neuron in Electrotonic Space

Since attenuation depends on direction, it is necessary to construct transforms in pairs for each
frequency of interest, one for signal spread away from a reference point (Vout) and the other for
spread toward it (Vin). The soma is often a good choice for the reference point, but any point in
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the cell could be used, and a different vantage point might be more appropriate for particular
analyses.

The only difference between using one pointi as the reference instead of any other pointj is in
the direction of signal propagation along the direct path betweeni andj (dashed arrows in Figure
2), whereVout relative toi is the same asVin relative toj and vice versa. The directions of signal
flow and therefore the attenuations along all other branches of the cell are unchanged. Thus the
transforms relative toi and j differ only along the direct pathij , and once theVout and Vin
transforms have been created for one referencei, it is easy to assemble the transforms with
respect to any other referencej.

i

j

i

j

Figure 2: Effect of reference point location on direction of signal propagation.

We have found two graphical representations of the transform to be particularly useful.
"Neuromorphic figures," in which the cell is redrawn so that the relative orientation of branches
is preserved (Figures 3 and 4), can be readily compared to the original anatomy for quick, "big
picture" insights regarding synaptic integration and interactions. For more quantitative analyses,
it is helpful to plot electrotonic distance from the reference point as a function of anatomical
distance (Tsai et al. 1993).

3 COMPUTATIONAL METHODS

The voltage attenuations along each segment of the cell are calculated from detailed, accurate
morphometric data and the best available experimental estimates of the biophysical properties of
membrane and cytoplasm. Any neural simulator like NEURON (Hines 1989) could be used to
find the attenuations for the DCVout transform. The DCVin attenuations are more time
consuming because a separate run must be performed for each of the dendritic terminations.
However, the AC attenuations impose a severe computational burden on time-domain simulators
because many cycles are required for the response to settle. For example, calculating the DC
Vout attenuations in a hippocampal pyramidal cell relative to the soma took only a few iterations
on a SUN Sparc 10-40, but more than 20 hours were required for 40 Hz (Tsai et al. 1994).
Finding the full set of attenuations for aVin transform at 40 Hz would have taken almost three
months.

Therefore we designed an O(N) algorithm that achieves high computational efficiency by
operating in the frequency domain and taking advantage of the branched architecture of the cell.
In a series of recursive walks through the cell, the algorithm applies Kirchhoff's laws to compute
the attenuations in each branch. The electrical characteristics of each segment of the cell are
represented by an equivalent T circuit. Rather than "lump" the properties of cytoplasm and
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membrane into discrete resistances and capacitances, we determine the elements of these
equivalent T circuits directly from complex impedance functions that we derived from the
impulse response of a finite cable (Tsai et al. 1994). Since each segment is treated as a cable
rather than an isopotential compartment, the resolution of the spatial grid does not affect
accuracy, and there is no need to increase the resolution of the spatial grid in order to preserve
accuracy as frequency increases. This is an important consideration for hippocampal neurons,
which have long membrane time constants and begin to show increased attenuations at
frequencies as low as 2 - 5 Hz (Tsai et al. 1994). It also allows us to treat a long unbranched
neurite of nearly constant diameter as a single cylinder.

Thus runtimes scale linearly with the number of grid points, are independent of frequency, and
we can even reduce the number of grid points if the diameters of adjacent unbranched segments
are similar enough. A benchmark of a program that uses our algorithm with NEURON showed a
speedup of more than four orders of magnitude without sacrificing accuracy (2 seconds vs. 20
hours to calculate theVout attenuations at 40 Hz in a CA1 pyramidal neuron model with 2951
grid points) (Tsai et al. 1994).

4 RESULTS

4.1 DC TRANSFORMS OF A CA1 PYRAMIDAL CELL

Figure 3 shows a two-dimensional projection of the anatomy of a rat CA1 pyramidal neuron (cell
524, left) with neuromorphic renderings of its DCVout and Vin transforms (middle and right)
relative to the soma. The three-dimensional anatomical data were obtained from HRP-filled cells
with a computer microscope system as described elsewhere (Rihn and Claiborne 1992, Claiborne
1992). The passive electrical properties used to compute the attenuations wereRi = 200Ω cm,

Cm = 1 F / cm2µ (for nonzero frequencies, not shown here) andRm = 30 kΩ cm2 (Spruston and
Johnston 1992).

200 mµ
L = 1

524

Figure 3: CA1 pyramidal cell anatomy (cell 524, left) with neuromorphic
renderings ofVout (middle) andVin (right) transforms at DC.

The Vout transform is very compact, indicating that voltage propagates from the soma into the
dendrites with relatively little attenuation. The basilar dendrites and the terminal branches of the
primary apical dendrite are almost invisible, since they are nearly isopotential along their lengths.
Despite the fact that the primary apical dendrite has a larger diameter than any of its daughter
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branches, most of the voltage drop for somatofugal signaling is in the primary apical. Therefore
it accounts for almost all of the electrotonic length of the cell in theVout transform.

TheVin transform is far more extensive, but most of the electrotonic length of the cell is now in
the basilar and terminal apical branches. This reflects the loading effect of downstream
membrane on these thin dendritic branches.

4.2 SYNAPTIC INTERACTIONS

The transform can also give clues to possible effects of electrotonic architecture on voltage-
dependent forms of associative synaptic plasticity and other kinds of synaptic interactions.
Suppose the cell of Figure 3 receives a weak or "student" synaptic input located400µmfrom the
soma on the primary apical dendrite, and a strong or "teacher" input is situated300µm from the
soma on the same dendrite.

A. cell 524

student

teacher

B. cell 503

200 mµ L = 1

Figure 4: Analysis of synaptic interactions.

The anatomical arrangement is depicted on the left in Figure 4A ("student" = square, "teacher" =
circle). TheVin transform with respect to the student (right figure of this pair) shows that voltage
spreads from the teacher to the student synapse with little attenuation, which would favor
voltage-dependent associative interactions.

Figure 4B shows a different CA1 pyramidal cell in which the apical dendrite bifurcates shortly
after arising from the soma. Two teacher synapses are indicated, one on the same branch as the
student and the other on the opposite branch. TheVin transform with respect to the student (right
figure of this pair) shows clearly that the teacher synapse on the same branch is closely coupled
to the student, but the other is electrically much more remote and less likely to influence the
student synapse.

5. SUMMARY

The electrotonic transformation is based on a logical, internally consistent conceptual approach
to understanding the propagation of electrical signals in neurons. In this paper we described two
methods for graphically presenting the results of the transformation: neuromorphic rendering,
and plots of electrotonic distance vs. anatomical distance. Using neuromorphic renderings, we
illustrated the electrotonic properties of a previously unreported hippocampal CA1 pyramidal
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neuron as viewed from the soma (cell 524, Figure 3). We also extended the use of the
transformation to the study of associative interactions between “teacher” and “student” synapses
by analyzing this cell from the viewpoint of a “student” synapse located in the apical dendrites
(Fig. 4A), contrasting this result with a different cell that had a bifurcated primary apical dendrite
(cell 503, Figure 4B). This demonstrates the versatility of the electrotonic transformation, and
shows how it can convey the electrical signaling properties of neurons in ways that are quickly
and easily comprehended.

This understanding is important for several reasons. First, electrotonus affects the integration
and interaction of synaptic inputs, regulates voltage-dependent mechanisms of synaptic plasticity,
and influences the interpretation of intracellular recordings. In addition, phylogeny,
development, aging, and response to injury and disease are all accompanied by alterations of
neuronal morphology, some subtle and some profound. The significance of these changes for
brain function becomes clear only if their effects on neuronal signaling are reckoned. Finally,
there is good reason to expect that neuronal electrotonus is highly relevant to the design of
artificial neural networks.
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