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Chapter 5
Representing neurons with a digital computer

Information processing in the nervous system involves the spread and interaction of
electrical and chemical signals within and between neurons and glia. From the
perspective of the experimentalist working at the level of cells and networks, these
signals are continuous variables. They are described by the diffusion equation and the
closely-related cable equation (Crank 1979; Rall 1977), in which potential (voltage,
concentration) and flux (current, movement of solute) are smooth functions of time and
space. But everything in a digital computer is inherently discontinuous: memory
addresses, data, and instructions are all specified in terms of finite sequences of 0s and 1s,
and there are finite limits on the precision with which numbers can be represented. Thus
there is no direct parallel between the continuous world of biology and what exists in
digital computers, so special effort is required to implement digital computer models of
biological neural systems. The aim of this chapter is to show how the NEURON
simulation environment makes it easier to bridge this gap. 

Discretization
To simulate the operation of biological neurons, NEURON uses the tactic of

discretizing time and space, which means approximating these partial differential
equations by a set of algebraic difference equations that can be solved numerically
(numerical integration; see Chapter 4: Essentials of numerical methods for neural
modeling). Indeed, spatial discretization, in one form or another, lies at the core of all
simulators used to model biological neurons. 

Discretization is often couched in terms of "compartmentalization," i.e. approximating the
cable equation by a series of compartments connected by resistors (see Chapter 4 and
Cables in Chapter 3). However, it is more insightful to regard discretization as an 
approximation of the original continuous system by another system that is discontinuous
in time and space. Viewed in this way, simulating a discretized model amounts to
computing the values of spatiotemporally continuous variables over a set of discrete
points in space (a "grid" of "nodes") for a finite number of instants in time. The size of
the time step and the fineness of the spatial grid jointly determine the accuracy of the
solution, and may also affect its stability. How faithfully a computed solution emulates
the behavior of the continuous system depends on the spatial intervals between adjacent
nodes, and the temporal intervals between solution times. These should be small enough
that the discontinuous variables in the discretized model can approximate the curvature in
space and time of the continuous variables in the original physical system.
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Choosing an appropriate discretization is a recurring practical problem in neural
modeling. The accuracy required of a discrete approximation to a continuous system, and
the effort needed to compute it, depend on the anatomical and biophysical complexity of
the original system and the question that is being asked. Thus finding the resting
membrane potential of an isopotential model with passive membrane may require only a
few large time steps at one point in space, but determining the time course of Vm
throughout a highly branched model with active membrane as it fires a burst of spikes
demands much finer spatiotemporal resolution; furthermore, selecting ∆x and ∆t for
complex models can be especially difficult.

Although the time scale of biophysical processes may suggest a natural ∆t, it is
usually not clear at the outset how fine the spatial grid should be. Both the accuracy of
the approximation and the computation time increase as the number of nodes used to
represent a cable increases. A single node is usually adequate to represent a short cable in
its entirety, but a large number of closely spaced nodes may be necessary for long cables
or highly branched structures. Also, as we intimated above, the choice of a spatial grid is
closely related to the choice of the integration time step, especially with NEURON's
Crank-Nicholson (second order) integrator, which can produce spurious oscillations if the
time step is too long for the spatial grid (see Chapter 4).

Over the years, a certain amount of folklore and numerous unreliable rules of thumb
have emerged concerning the topic of "compartment size." Among the topics we cover in
this chapter are a practical method for quickly testing spatial accuracy, and a rational
basis for specifying the spatial grid that makes use of the AC length constant at high
frequencies (Hines and Carnevale 2001).

No less important is the practical question of how to manage all the parameters that
exist throughout a model. Returning briefly to the metaphor of "compartments," let us
consider membrane capacitance, a parameter that has a different value in each
compartment. Rather than specify the capacitance of each compartment individually, it is
better to deal in terms of a single specific membrane capacitance that is constant over the
entire cell, and have the program compute the values of the individual capacitances from
the areas of the compartments. Other parameters such as diameter or channel density may
vary widely over short distances, so the granularity of their representation may have little
to do with numerically adequate discretization.

How NEURON separates anatomy and biophysics 
from purely numerical issues

Thinking in terms of compartments leads to model implementations that require users
to keep track of the correspondence between compartments and anatomical locations. If
we change the size or number of compartments, e.g. to see whether spatial discretization
is adequate for numerical accuracy, we must also abandon the old mapping between
compartments and locations in favor of a completely new one.
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So even though NEURON is a compartmental modeling program, it has been
designed to separate the specification of biological properties (neuron shape and
physiology) from computational issues such as the number and size of compartments.
This makes it easy to trade off between accuracy and speed, and enables convenient
verification of the numerical correctness of simulations. It also shields users from
numerical details, so they can focus on matters that are biologically relevant. 

NEURON accomplishes this by employing four related concepts: sections, range,
range variables, and segments. These concepts are defined in the following paragraphs,
and discussed later in this chapter under the heading How to specify model properties.

Sections and section variables
A section is a continuous length of unbranched cable with its own anatomical and

biophysical properties. Each section in a model can be the direct counterpart of a neurite
in the original cell. This reduces the difficulty of managing anatomically detailed models,
because neuroscientists naturally tend to think in terms of axonal and dendritic branches
rather than compartments. 

Figure 5.1 illustrates how a cell might be mapped into sections. The cartoon at the top
shows how an anatomist might regard this cell: the soma gives rise to a branched
dendritic tree and an axon hillock which is connected to a myelinated axon. The bottom
of Fig. 5.1 shows how to break this cell into sections in order to build a NEURON model.
Notice that each biologically significant anatomical structure corresponds to one or more
sections of the model: the cell body (Soma), axon hillock (AH), myelinated internodes
(Ii), nodes of Ranvier (Ni), and dendrites (Di). Sections allow this kind of

functional/anatomical parcellation of a cell to remain foremost in the mind of the person
who constructs and uses a NEURON model.

Figure 5.1. Top: Cartoon of a neuron indicating biologically significant
structures. Bottom: How these structures are represented by sections in a
NEURON model. Reproduced from (Hines and Carnevale 1997).
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Certain properties apply to a section as a whole. These properties, which are
sometimes called section variables, are length L, cytoplasmic resistivity Ra, and the
discretization parameter nseg (see Table 5.1 and following section).

Table 5.1. Section variables

Name Meaning Units

L section length [µm]

Ra cytoplasmic resistivity [Ω cm]

nseg discretization parameter [1], i.e. dimensionless

Range and range variables
Many variables in real neurons are continuous functions of position throughout the

cell. In NEURON these are called range variables (see Table 5.2 for examples). While
each section is ultimately discretized into compartments, range variables are specified in
terms of a continuous parameter: normalized distance along the centroid of each section.
This normalized distance, which is called range or arc length, varies linearly from 0 at
one end of the section to 1 at the other. Figure 5.2 depicts the correspondence between
the physical distance of a point along the length of a section and its location in units of
normalized distance. 

Table 5.2. Some examples of range variables

Name Meaning Units

di am diameter [µm]

cm specific membrane capacitance [µf/cm2]

v membrane potential [mV]

i na sodium current [mA/cm2]

nai internal sodium concentration [mM]

n_hh Hodgkin-Huxley potassium conductance
gating variable 

[1], i.e. dimensionless

0 1
distance

normalized

0
distance
physical

length
physical

Figure 5.2. Top: The arrow indicates the location of a point at a particular physical
distance from one end of a section. Bottom: In NEURON, this location is expressed in
terms of normalized distance ("range") along the length of the section. 
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One way to access the values of range variables and other section properties is by dot
notation, which specifies the name of the section, the name of the variable, and the
location of interest. Thus 

soma. di am( 0)  = 10

sets the diameter closest to the 0 end of the soma section to 10 µm, and 

dend. v( 0. 5)

returns the membrane potential at the middle of the dend section. Note that the value
returned by sect i onname. r angevar ( x)  is the value at the center of the segment (see
below) that contains x, not the linear interpolation of the values associated with the
centers of adjacent segments. If parentheses are omitted, the position defaults to 0.5
(middle of the section), i.e. dend. v( 0. 5)  and dend. v  both refer to membrane potential
at the midpoint of dend. 

Range variables and related topics are covered more thorougly below in How to
specify model properties.

Segments
As already mentioned, NEURON computes membrane current and potential at one or

more discrete positions ("nodes") that are equally spaced along the interior of a section.
In addition to these internal nodes, there are terminal nodes at the 0 and 1 ends. However,
no membrane properties are associated with terminal nodes so the voltage at the 0 and 1
locations is defined by a simple algebraic equation (the weighted average of the potential
at adjacent internal nodes) rather than an ordinary differential equation. Each section has
a parameter nseg that controls the number of internal nodes. These nodes are located at
arc length = (2 i  - 1) / 2 nseg where i  is an integer in the range [1, nseg] (Fig. 5.3). 

Figure 5.3. Each section has a discretization parameter nseg that governs the
number of internal nodes (black dots inside the section) at which membrane
potential is computed. The thin lines mark conceptual boundaries between
adjacent segments. 

You can think of a section as being broken into nseg segments of equal length,
which are conceptually demarcated by evenly spaced boundaries at intervals of 1 / nseg,
so that each segment has one node at its midpoint. This internal node is the point at which
the voltage of the segment is defined. The transmembrane currents over the entire surface
area of a segment are associated with its node. Nodes of adjacent segments are connected
by resistors that represent the resistance of the intervening cytoplasm (Fig. 5.7). 
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Each section in a model can have a different value for nseg. One way to specify this
value is with dot notation, e.g. 

axon. nseg = 3

ensures that membrane current and potential will be computed at three points along the
length of the section called axon. The value to choose for nseg depends on the degree of
spatial accuracy and resolution that is desired: larger values of nseg mean more nodes
spaced at shorter intervals, so that the piecewise linear approximation in space becomes
more accurate and smoother. Strategies for selecting appropriate values of nseg are
discussed later in this chapter under Discretization guidelines.

Implications and applications of this strategy
Range, range variables, and nseg free the user from having to keep track of the

correspondence between segment number and position along each branch of a model.
This avoids the tendency of compartmental modeling approaches to confound
representation of the physical properties of neurons, which are biologically relevant, with
implementational details such as compartment size, which are mere artifacts of having to
use a digital computer to emulate the behavior of a distributed physical system that is
continuous in time and space. 

For a concrete example of the complications that can arise in a compartment-oriented
simulation environment, suppose the axon shown in Fig. 5.4 is 1000 µm long and we are
particularly interested in the membrane potential at a point 700 µm from its left end. If
our model has 5 compartments numbered 0 to 4, then we want to know the membrane
potential in compartment 3, but if there are 25 compartments, it is compartment 17 that
deserves our attention. It is easy to see that dealing with highly branched models can be
quite confusing. But in NEURON, the membrane potential of interest is simply called
axon. v( 0. 7) , regardless of the value of axon's discretization parameter nseg. 

0 1000 µm
700 µm

430

0 2417

Figure 5.4. Boxed in by compartments. Top: Conceptual model of an
unbranched axon 1000 µm long. We are interested in membrane potential at a
point 700 µm from its left end. Middle and bottom: The index of the
compartment that corresponds to the location of interest depends on how many
compartments there are.

Spatial accuracy

As we mentioned in Chapter 4, the spatial discretization method employed by
NEURON produces solutions that are second order correct in space, i.e. spatial error
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within a section is proportional to the square of its segment length. It is crucial to realize
that the location of the second order correct voltage is not at the edge of a segment but
rather at its center, i.e. at its node (Fig. 5.3; also see Spatial discretization in
Chapter 4). This has several important consequences.

� To allow branching and injection of current at the precise ends of a section while
maintaining second order correctness, extra voltage nodes that represent compartments
with 0 area are defined at the section ends. It is possible to achieve second order
accuracy with sections whose end nodes have nonzero area compartments, but the
areas of these terminal compartments would have to be exactly half that of the internal
compartments, and extra complexity would be imposed on administration of channel
density at branch points.

� To preserve second order accuracy, localized current sources (e.g. synapses, current
clamps, voltage clamps--see Point processes below) must be placed at nodes. For
the same reason, all sections should be connected at nodes.

� If nseg is even, dend. v( 0. 5)  and dend. v  will return a value that actually comes
from "the nearest internal node" which is not at the middle of dend but instead
depends on roundoff error. Using odd values for nseg avoids such capricious
outcomes by ensuring that there will be a node at the midpoint of each section.

� Second order spatial accuracy means that the results of a NEURON simulation are a
piecewise linear approximation to the continuous system. Therefore second order
accurate estimates of continuous variables at intermediate locations in space can be
found by linear interpolation between nodes.

A practical test of spatial accuracy

A convenient way to test the spatial accuracy of a model is to start by running a
"control" simulation with the current resolution that will serve as a basis for comparison.
Then execute the command 

f or al l  nseg * = 3

which increases spatial resolution by a factor of 3 throughout the model and reduces
spatial error terms by a factor of 9. Now run a "test" simulation and see if a significant
qualitative or quantitative change has occurred. The absence of a significant change is
evidence that the control simulation was sufficiently accurate in space.

Why triple nseg instead of just doubling it? Because NEURON uses a piecewise
linear approximation to emulate the continuous variation of membrane current and
voltage in space. The breakpoints in this piecewise linear approximation are located at the
internal nodes of each section. Multiplying nseg by an even number will shift these
breakpoints to new locations, making it hard to compare the results of the control and test
simulations. For instance, with nseg = 1, voltage is computed at arc length = 0.5, but
with nseg = 2 it is computed at arc length = 0.25 and 0.75 (see Fig. 5.3). If simulations
with nseg = 1 and nseg = 2 did produce different results, it could be difficult to know
whether this reflects improved spatial accuracy or is just due to the fact that the two
simulations computed solutions at different points in space. Tripling nseg adds new
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breakpoints (at arc length = 1/6 and 5/6 in Fig. 5.3) without changing the locations of any
that were already there (at 0.5 in this case). Any odd multiple could be used, but 3 is a
practical value since it reduces spatial error by almost an order of magnitude, which is
probably enough to detect inadequate spatial accuracy.

While repeatedly tripling nseg throughout an entire model is certainly a convenient
and effective method for testing the spatial grid, this is generally not a good way to
achieve computational efficiency, especially if geometry is complex and biophysical
properties are nonuniform. Models based on quantitative morphometric data often have
several branches that need nseg ≥ 9, while many other branches require only 1 or 3
nodes. By the time the spatial grid is just adequate in the former, it will be much finer
than necessary in the latter, increasing storage and prolonging run time. We return to this
problem at the end of this chapter in the section Choosing a spatial grid.

How to specify model properties
In Chapter 1 we used the CellBuilder to implement a computational model of a

particular conceptual model. First we specified the topology (branched architecture) of
the computational model, then its geometry (physical dimensions), and finally its
biophysical properties. This is also a good sequence to follow when implementing a
computational model by writing hoc  code, and we will examine each of these steps in
turn. However, at some points it will be necessary to address syntactic details. The first
syntactic detail has to do with "the currently accessed section," an idea so fundamental
that we must consider it before proceeding to topology.

Which section do we mean?
Most of our attention in the following paragraphs will be devoted to sections. We will

see how to create sections, assemble them into a model with the desired topology, and
specify their geometric and biophysical attributes. Because sections share property names
(e.g. length L, diameter di am), it is always necessary to specify which section is being
discussed. This is called the currently accessed section.

NEURON offers three ways to specify the currently accessed section, each being
compact in some contexts and cumbersome in others: dot notation, section stack, and
default section. We consider them in order of precedence, starting with the method that
has highest priority.

1. Dot notation

Syntax sectionname.variablename

Examples
dendr i t e[ 2] . L = dendr i t e[ 1] . L + dendr i t e[ 0] . L
axon. v = soma. v
pr i nt  soma. gnabar
axon. nseg = 3* axon. nseg
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Comments
� This takes precedence over the other methods
� Dot notation is necessary in order to refer to more than one section within a

single statement

2. Section stack

Syntax sectionname {  stmt }

where stmt is one or more statements. sectionname becomes the currently
selected section during execution of stmt. Afterwards, the currently selected
section reverts to whatever it was before sectionname was seen.

Comments
� This is the most useful method for programming, since the user has explicit

control over the scope of the section and can set several range variables.
� Nesting is allowed to any level, i.e.

sectionname1 {  
stmt1
sectionname2 {  

stmt2 
sectionname3 {  

et c.
}

}
}

� Avoid the error
soma L=10 di am=10

(i.e. missing curly brackets), which sets soma. L, then pops the section stack
and sets di am for whatever section is then on the stack. 

� Control flow should reach the end of stmt in order to automatically pop the
section stack. Therefore stmt should not include the cont i nue, br eak , or
r et ur n statement.

� A section cannot be used as a variable for assignment or passing as an
argument to a function or procedure. However, the same effect can be
obtained with the Sect i onRef  class, which allows sections to be referenced
by normal object variables. The use of push_sect i on( )  for this purpose
should be avoided except as a last resort.

� Looping over sets of sections is most often done with the f or al l  and
f or sec commands.

3. Default section

Syntax access sectionname

defines a default section that will be the currently selected section when the first
two methods are not in effect. If a model has a conceptually privileged section
that gets most of the use, it is best to declare it as the default section, e.g. 

access soma
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Having done this, one can determine the values of voltage and other variables by
a minimum of typing at the interpreter's oc> prompt. Thus after soma is declared
to be the default section, 

pr i nt  v ,  i na,  gk_hh

will print out the membrane potential, sodium current, and Hodgkin-Huxley
potassium conductance at soma( 0. 5) . 

Comments
� Dot notation and stack of sections both take precedence over this method.
� The access  statement should only be used once in a program. The 

sectionname {  stmt }

form is almost always the right way to specify the current section.

How to set up model topology
In the NEURON simulation environment, the

branched topology of a model cell is constructed by
creating sections and attaching them to each other in the
form of a tree. Sections are created with hoc  statements
of the form 

cr eat e sectionname

They can be attached to each other with the syntax 

connect  child( 0 or 1) ,  parent( x)

which connects the 0 or 1 end of child to location x  on parent. The alternative syntax 

connect  child( 0 or 1) ,  x

attaches child to location x on the currently accessed section.

Loops of sections

A model of a cell cannot contain a loop of sections. If a sequence of connect
statements produces a loop of sections, an error is generated when the internal data
structures are created, and NEURON's interpreter will require that the loop be broken by
disconnecting one of the sections in the loop. Tight electrical loops can be implemented
with the Li near Mechani sm class.

Loops that involve sections are allowed if at least one element in the loop is a
membrane mechanism, e.g. a gap junction. For the sake of stability it may be preferable
to use the the Li near Mechani sm class to set up this kind of nonlocal coupling between
system equations. Gap junctions can also be implemented with mechanisms that use
POI NTER variables, but this may cause spurious oscillations if coupling is tight (see
Example 10.2: a gap junction in Chapter 10).
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A section may have only one parent

If an attempt is made to attach a child to more than one parent, a notice is printed on
the standard error device saying that the section has been reconnected. To avoid the
notice, disconnect the section first with the procedure di sconnect ( ) . 

The root section

Each section in a tree has a parent section, except for the root section. The root
section is determined implicitly by the fact that we never "connect" it to anything. Any
section can be used as a root section, and the identity of the root section has no effect on
computational efficiency. The root section and the default section (i.e. the section
specified by the access statement) are different things and shouldn't be confused with
each other. Every model has a root section, and most often this turns out to be something
called soma, but there is no absolute requirement that a model have a default section.
Usually it is most convenient to construct a model in such a way that the root and default
sections are the same, but this isn't mandatory.

Attach sections at 0 or 1 for accuracy

Section attachments must be located at nodes to preserve second order spatial
accuracy. It is generally best for x to be either 0 or 1, rather than an intermediate value.
Attempting to connect a section to a non-node location will result in the section actually
being connected to the nearest internal node of the parent, which depends on the value of
nseg and may be quite far from the intended position. Even if a section is connected to
an internal node, if nseg is then changed, e.g. to test for spatial accuracy, the attachment
could be repositioned to a different site (another reason to increase nseg by an odd
factor). This would affect the electrotonic architecture of
the model, causing spurious changes in simulation results.
Therefore the best policy is to connect child sections only
to the 0 or the 1 end of the parent, and not to intermediate
locations. Because of their small size, dendritic spines are
a possible exception to this rule.

Checking the tree structure with topology()

The t opol ogy( )  function prints the tree structure using a kind of "typewriter art."
Each section appears on a separate line, starting with the root section. The root section is
shown with its 0 and 1 ends at the left and right, respectively, and marked by a |  (vertical
bar). The remaining sections are printed with a `  (grave) at the end that is attached to the
parent, and a |  at the other end. Each segment in every section is marked by a -
(hyphen). 

For example the statements

cr eat e soma,  dend[ 3]
soma f or  i =0, 2 {

connect  dend[ i ] ( 0) ,  1
}
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create a section named soma and an array of three sections named dend[ 0] , dend[ 1] ,
and dend[ 2] , and then attaches the 0 end of each dend to the 1 end of soma. If we now
type 

t opol ogy( )

at the oc> prompt, NEURON's interpreter will print

| - |        soma( 0- 1)
   ` |        dend[ 0] ( 0- 1)
   ` |        dend[ 1] ( 0- 1)
   ` |        dend[ 2] ( 0- 1)

This confirms that soma is the root section of this tree, that the three dend[ ]  sections are
attached to its 1 end, and that all sections have one segment.

Viewing topology with a Shape plot

For a graphical display of the topology of our model, we can execute the statements 

obj r ef  s
s = new Shape( )

to create a Shape plot (Fig. 5.5). The labels in this figure have been added to identify the
sections and their orientation. The root section is soma, and the three child branches are
dend[ 0]  - dend[ 3] . Each of the child sections are connected to the 1 end of soma, and
all sections are drawn from left (0 end) to right (1 end). If a section were attached to the 0
end of the root section, it would be drawn right to left. The rules that govern the
appearance of a model in a Shape plot are further discussed under 3-D specification
below and under Strange shapes? in Chapter 6.

dend[0]

dend[2]

dend[1]

1

0

soma0 1

Figure 5.5. A Shape plot display of the topology of a model in which the 0 ends
of three child sections are attached to the 1 end of the root section. 

How to specify geometry
A newly created section has certain default properties, as we can see by executing 

oc>cr eat e axon
oc>f or al l  psect i on( )
axon {  nseg=1  L=100  Ra=35. 4

/ * l ocat i on 0 at t ached t o cel l  0* /
/ *  Fi r s t  segment  onl y * /
i nser t  mor phol ogy {  di am=500}
i nser t  capaci t ance {  cm=1}

}
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where the units are [µm] for length L and diameter di am, [Ω cm] for cytoplasmic
resistivity Ra, and [µf/cm2] for specific membrane capacitance cm. Users will generally
want to change these values, except for cm and perhaps Ra. 

Below we discuss the two ways to specify the physical dimensions of a section: the
"stylized method" and the "3-D method." Regardless of which method is used, NEURON
calculates the values of internal model parameters, such as average diameter, axial
resistance, and compartment area, that are assigned to each segment. This calculation
takes any nonuniformity of anatomical or biophysical properties into account.

Stylized specification

With the "stylized method" one assigns values directly to section length and diameter
with statements like 

axon {  L=1000  di am=1 }

This is appropriate if the notions of cable length and diameter are authoritative and three
dimensional shape is irrelevant. 

Segment surface area ar ea and axial resistance r i  are computed as if the section
were a sequence of right circular cylinders of length L / nseg, whose diameters are given
by the di am range variable at the center of each segment. Cylinder ends do not contribute
to surface area, and segment surface area is very close to the surface area of a truncated
cone as long as diameter does not change too much. Abrupt diameter changes should be
restricted to section boundaries, for reasons that are explained below (see Avoiding
artifacts). For plotting purposes, L and di am are used to automatically generate 3-D
information for a stylized straight cylinder.

One fact that is often useful when working with stylized models is that the surface
area of a cylinder with length equal to diameter is identical to that of a sphere of the same
diameter. Another fact to remember is that, when the surface area of a single
compartment model is 100 µm2, total transmembrane current over the entire surface of
the model in [nA] will be numerically equal to the membrane current density in
[mA/cm2]. This implies that the current delivered by a current clamp in [nA] will also be
numerically equal to the membrane current density in [mA/cm2].

3-D specification

The alternative to the stylized method is the 3-D method, in which one specifies a list
of (x, y, z) coordinates and corresponding diameters, e.g.

dend {
pt 3dadd( 10, 0, 0, 5)   / /  x,  y,  z ,  di am
pt 3dadd( 16, 10, 0, 3)
pt 3dadd( 25, 14, - 3, 2)

}

NEURON then computes section length and diameter from these values. The 3-D method
is preferable if the model is based on quantitative morphometry, or if visualization is
important. 
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The anatomical data are kept in an internal list of (x, y, z, diam) "points," in which the
first point is associated with the end of the section that is connected to the parent--this is
not necessarily the 0 end--and the last point is associated with the opposite end. There
must be at least two points per section, and they should be ordered in terms of
monotonically increasing arc length. This 3-D information, or "pt3d list," is the
authoritative definition of the shape of the section and automatically determines section
length L, segment diameter di am, ar ea, and r i . Properly used, the 3-D method allows
substantial control over the appearance of a model in a Shape plot (see Strange
Shapes? in Chapter 6). However, side-effects can occur if geometry was originally
specified with the stylized method (see Avoiding artifacts below). 

To prevent confusion, when using the 3-D method one should generally attach only
the 0 end of a child section to a parent. This will ensure that di am( x)  (segment
diameter) as x  ranges from 0 to 1 has the same sense as di am3d( i )  (the actual
morphometric diameters) as i  ranges from 0 to n3d( ) -1 (n3d( )  is the number of (x, y,
z, diam) points used to specify the geometry of the section). It can also prevent
unexpected distortions of the model appearance in a Shape plot (see The case of the
disappearing section in Chapter 6).

When 3-D specification is used, a section is treated as a sequence of frusta (truncated
cones), as in the example shown in Fig. 5.6. The morphometric data for this particular
neurite consist of four (x, y, z, diam) measurements (Fig. 5.6 A). These 3-D points define
the locations and diameters of the ends of the frusta (Fig. 5.6 B). The length L of the
section is the sum of the distances from one 3-D point to the next. The effective di am,
ar ea, and axial resistance r i  of each segment are computed from this sequence of points
by trapezoidal integration along the centroid of the segment. This takes into account the
extra area introduced by diameter changes; even degenerate cones of 0 length can be
specified (i.e. two points with identical coordinates but different diameters), which add
surface area but not length to the section. No attempt is made to deal with the effects of
centroid curvature on surface area. 

The number of 3-D points used to describe the shape of the section has nothing to do
with nseg and does not affect simulation speed. Thus if we represent the neurite of with
a section using nseg = 1, the entire section will have only one node, and that node will
be located midway along its length (x = 0.5 in Fig. 5.6 C). The membrane properties
associated with this node are computed by integrating over the entire surface area of the
section (0 ≤ x ≤ 1). The values of the axial resistors to either side of the node are
determined by integrating the cytoplasmic resistivity along the paths from the 0 and 1
ends of the section to its midpoint (dashed line in Fig. 5.6 C). Thus the left and right hand
axial resistances of Fig. 5.6 D are evaluated over the x intervals [0, 0.5] and [0.5, 1],
respectively.

Figure 5.7 shows what happens when nseg = 2. Now the section is broken into two
segments of equal length that correspond to x intervals [0, 0.5] and [0.5, 1]. The
membrane properties over these intervals are attached to the nodes at 0.25 and 0.75,
respectively. The three axial resistors Ri1, Ri2, and Ri3 are determined by integrating the

path resistance over the x  intervals [0, 0.25], [0.25, 0.75], and [0.75, 1].
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Figure 5.6. A: cartoon of an unbranched neurite (thick lines). Quantitative morphometry
has generated successive diameter measurements (circles) centered at x, y, z coordinates
(crosses). B: Each adjacent pair of diameter measurements is treated as parallel faces of
a truncated cone or frustum. The central axis of the chain of solids is indicated by a thin
centerline. C: After straightening the centerline so the faces of adjacent frusta are flush
with each other. The scale beneath the figure shows the distance along the midline of the
section in terms of arc length, symbolized here by the variable x. The vertical dashed
line at x  = 0.5 divides the section into two halves of equal length. D: Equivalent circuit
of the section when nseg = 1. The open rectangle includes all mechanisms for ionic
(non-capacitive) transmembrane currents. Reproduced from (Hines and Carnevale 1997).

Figure 5.7. Representation of the neurite of Fig. 5.6 when nseg = 2. The equivalent
circuit now has two nodes. See text for details. Reproduced from (Hines and Carnevale
1997).
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Avoiding artifacts

Beware of zero diameter

If diameter equals 0, axial resistance becomes essentially infinite, decoupling adjacent
segments. The diameter at the 0 and 1 ends of a section generally should equal the
diameter of the end of the connecting section.

A blatant attempt to set diameter to 0 using the stylized method, e.g. with a statement
such as 

dend. di am( 0. 3)  = 0

will produce an error message like this 

nr ni v:  dend di amet er  di am = 0.  Set t i ng t o 1e- 6 i n dd. hoc near  l i ne 16

While NEURON prevents the diameter from becoming 0, 10-6 µm is so narrow that axial
resistance in the affected region is, for modeling intents and purposes, infinite. Models
constructed with the stylized specification can be checked for narrow diameters by 
executing

f or al l  f or  ( x)  i f  ( di am( x) <1) {  pr i nt  secname( ) ,  " ",  x,  "  ",  di am( x) }

which reports all locations at which di am falls below 1 µm. The numeric criterion in the
i f  statement can be changed from 1 µm to whatever value is appropriate for the data in
question. However, this will not produce definitive results if the geometry has been
reinterpreted as 3-D data, in which case the 3-D data points need to be tested (see below).

The 3-D specification is more often a source of diameter problems. Morphometric
data files sometimes contain measurements with diameters that are extremely small or
even 0. This may occur because of operator error, or because the soma (or some other
structure) was treated as a sphere with initial and terminal diameters equal to 0. Such
problems can be difficult to track down because morphometric data files generally
contain hundreds, if not thousands, of measurements. Furthermore, the hoc  interpreter 
does not issue an error message when it encounters a pt 3dadd( )  with a diameter
argument of 0. 

When 3-D data points exist, the value returned by di am( x)  is the diameter of a right
cylinder that would have the same length and area as the segment that contains x. This
means that di am( x)  may seem reasonable even though the 3-D data contain one or more
points with zero (or very small) diameter so that axial resistance blows up. Therefore it is
little use to check di am( x)  when 3-D data exist. Instead, we must test the 3-D diameters
by executing 

f or al l  f or  i =0, n3d( ) - 1 i f  ( di am3d( i ) ==0)  {  pr i nt  secname( ) ,  "  " ,  i  }

This uses f or al l  to iterate over all sections, testing each 3-D data point, and printing the
name of the section and the index of each point at which diameter is found to be 0.

Stylized specification may be reinterpreted as 3-D specification

When a model is created using the stylized specification of geometry, the 3-D data
list is initially empty. If the def i ne_shape( )  procedure is then called, a number of 3-D
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points is created equal to the number of segments plus the end areas. This happens
automatically if a Shape object is created, either with hoc  statements or by using the
GUI to bring up a Shape plot or any of the GUI tools that show the shape of the model,
e.g. a PointProcessManager. As we mentioned above, when 3-D points exist, they
determine the calculation of L, di am, ar ea and r i . Therefore di am, ar ea, and r i  can
change slightly merely due to Shape creation. 

After this happens, when L and di am, are changed, there is first a change to the 3-D
points, and then L and di am are updated to reflect the values of these 3-D points. In
general, specifying a varying di am will not give exactly the same diameter values as in
the case where no 3-D information exists. 

For example, this code 

cr eat e a
access a
L=100
Ra=100
nseg = 3
di am=10
di am( 0. 66: 1) =20: 20

defines a section with three segments, with di am = 10 µm in the segments centered at
0.16666667 and 0.5, and 20 µm in the segment centered at 0.83333333. Since the stylized
method was used to create this section, there will be no 3-D points. We can verify this by
typing n3d( )  and noting that the returned value is 0. We can also check di am and the
computed values of ar ea and r i  with the statement 

f or  ( x)  pr i nt  x* L,  di am( x) ,  ar ea( x) ,  r i ( x)

If we now create a Shape, e.g. by executing 

obj r ef  s
s = new Shape( )

we will find that n3d( )  returns 5, i.e. there are now five 3-D points. The statement 

f or  i =0,  n3d( ) - 1 pr i nt  ar c3d( i ) ,  di am3d( i )

(ar c3d( i )  is the anatomical distance of the i th 3-D point from the 0 end of the section)
produces the output

0 10
16. 666666 10
50 10
83. 333336 20
100 20

which shows that the 3-D diameters have taken on the values that we had assigned using
the stylized method.

However, the values of di am, ar ea, and r i  have been altered in the segments
adjacent to the diameter change (Fig. 5.8). This effect is smaller when nseg is larger. It is
caused by the fact that the 3-D points define a series of truncated cones rather than right
circular cylinders. The reported di am( x)  is the average diameter over the corresponding
length of the 3-D model, and ar ea( x)  is the integral of the 3-D surface; this is not
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necessarily equal to the stylized area PI * di am( x) * L/ nseg, which ignores end area
associated with abrupt diameter changes. This latter difference may be small, as in this
case where ar ea( x)  for the second and third segments is 1185 and 1974 µm2

respectively, compared to 1178 and 1963 µm2 for the stylized area (all values rounded to
the nearest µm2), but actual results depend on model geometry and whether these have a
significant effect on simulation results can only be judged on a case by case basis. What
is clear for all cases, however, is that abrupt diameter changes should only take place at
the boundaries of sections if we wish to view shape and also use the smallest possible
number of segments.
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Figure 5.8. di am, ar ea, and r i  at the internal nodes of a 100 µm long section
with nseg = 3 and Ra = 100 Ω cm. Thin lines with + show the values
immediately after geomet r y  was specified, when no 3-D points existed. Thick
lines with circles show the values after def i ne_shape( )  was executed,
creating a set of 3-D points and forcing recalculation of di am, ar ea, and r i .

How to specify biophysical properties
As we mentioned in How to specify geometry, the only biophysical attributes of a

new section are cytoplasmic resistivity Ra and specific membrane capacitance cm, whose
default values are 35.4 Ω cm and 1 µf/cm2, respectively. A new section has no membrane
conductances, pumps, or buffers. It is assumed to lie in an extracellular medium with zero
resistance or capacitance, and there are no synapses, gap junctions, or voltage or current
clamps. Anything other than the bare bones framework of Ra and cm must be added.

Distributed mechanisms

Many biophysical mechanisms that generate or modulate electrical and chemical
signals are distributed over the membrane or throughout the cytoplasm of a cell. In the
NEURON simulation environment, these are called distributed mechanisms. Examples of
distributed mechanisms include voltage-gated ion channels like those that generate the
Hodgkin-Huxley currents, active transport mechanisms like the sodium pump, ion
accumulation in a restricted space, and calcium buffers. Distributed mechanisms
associated with cell membrane are often called "density mechanisms" because they are
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specified with density units, e.g. current per unit area, conductance per unit area, or pump
capacity per unit area (see Table 5.3).

Distributed mechanisms are assigned to a section with an i nser t  statement, as in

soma i nser t  hh
dend i nser t  pas

These particular statements would add the hh (Hodgkin-Huxley) mechanism to soma and
the pas (passive) mechanism to dend.

Point processes

Distributed mechanisms are not the most appropriate representation of all signal
sources. Localized membrane shunts (e.g. a hole in the membrane), synapses, and
electrodes are called point processes. They are best specified using absolute units, i.e.
microsiemens and nanoamperes, rather than the density units that are appropriate for
distributed mechanisms (see Table 5.3). 

Table 5.3. Examples of units associated with distributed mechanisms 
and point processes

Name Meaning Units

gna_hh conductance density of open Hodgkin-Huxley
sodium channels

[S/cm2]

i na net sodium current density (i.e. produced by all
mechanisms in a section that generate sodium
current)

[mA/cm2]

r s series resistance of an SECl amp [106 Ω]

gmax peak conductance of an Al phaSynapse [µS]

i total current delivered by an SECl amp or an
Al phaSynapse

[nA]

An object syntax 

obj r ef  varname
secname varname = new Classname( x)
varname. attribute = value

is used to manage the creation, insertion, attributes, and destruction of point processes.
Object oriented programming in NEURON is discussed thoroughly in Chapters 13 and
14; to illustrate the pertinent essentials for dealing with point processes, let us consider
the following code, which implements a current clamp attached to the middle of a section
called soma. 
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obj r ef  st i m
soma st i m = new I Cl amp( 0. 5)
st i m. amp = 0. 1
st i m. del  = 1
st i m. dur  = 0. 1

The first line declares that st i m is a special kind of variable called an obj r ef  (object
reference), which we will use to refer to the current clamp object. The second line creates
a new instance of the I Cl amp object class, located at the middle of soma, and assigns
this to st i m. The next three lines specify that st i m will deliver a 0.1 nA current pulse
that begins at t = 1 ms and lasts for 0.1 ms.

When a point process is no longer referenced by any object reference, it is removed
from the section and destroyed. Consequently, redeclaring st i m with the statement
obj r ef  st i m would destroy this I Cl amp, since no other object reference would
reference it.

The x  position specified for a point process can have any value in the range [0,1]. If x
is specified to be 0 or 1, the point process will be located at the corresponding end of the
section. For specified locations 0 < x < 1, the actual position used by NEURON will be
the center of the segment that contains x. Thus, if dend has nseg = 5, the segment
centers (internal nodes) are located at x = 0.1, 0.3, 0.5, 0.7 and 0.9, so 

obj r ef  st i m1,  s t i m1
dend st i m1 = new I Cl amp( 0. 04)
dend st i m2 = new I Cl amp( 0. 61)

would actually place st i m1 at 0.1 and st i m2 at 0.7. The error introduced by this "shift"
can be avoided by explicitly placing point processes at internal nodes, and restricting
changes of nseg to odd multiples. However, this may not be possible in models that are
based closely on real anatomy, because actual synaptic locations are unlikely to be
situated precisely at segment centers. To completely avoid nseg-dependent shifts of
point process locations, one can choose sections with lengths such that the point
processes are located at 0 or 1 ends.

The location of a point process can be changed without affecting its other attributes.
Thus dend st i m2. l oc( 0)  would move st i m2 to the 0 end of dend. 

If a section's nseg is changed, the point processes on that section are relocated to the
centers of the new segments that contain the centers of the old segments to which the
point processes had been assigned. When a segment is destroyed, as by re-creating the
section, all of its point processes lose their attributes, including x  location and which
section they belong to.

Many distributed mechanisms and point processes can be simultaneously present in
each segment. One important difference between distributed mechanisms and point
processes is that any number of the same kind of point process can exist at the same
location, whereas a distributed mechanism is either present or not present in a section.
For example, several Al phaSynapses  might be attached to the soma, but the hh
mechanism would either be present or absent.
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User-defined mechanisms

User-defined distributed mechanisms and point processes can be added to NEURON
with the model description language NMODL. This lets the user focus on specifying the
equations for a channel or ionic process without regard to its interactions with other
mechanisms. The NMODL translator constructs C code which properly and efficiently
computes the total current of each ionic species used, as well as the effect of that current
on ionic concentration, reversal potential, and membrane potential. This code is compiled
and linked into NEURON. NMODL is discussed extensively in Chapter 9 and 10, but it
is useful to review some of its advantages here.

1. Details of interfacing new mechanisms to NEURON are handled automatically--and
there are a great many such details. For instance,

� NEURON needs to know that model states are range variables, and which
model parameters can be assigned values and evaluated from the interpreter.

� Point processes need to be accessible via the interpreter's object syntax, and
density mechanisms need to be added to a section when the i nser t  statement
is executed.

� If two or more channels use the same ion at the same place, the individual
current contributions must be added together to calculate a total ionic current.

2. Consistency of units is ensured.

3. Mechanisms described by kinetic schemes are written with a syntax in which the
reactions are clearly apparent. The translator provides tremendous leverage by generating
a large block of C code that calculates the analytic Jacobian and the state fluxes.

4. There is often a great increase in clarity since statements are at the model level instead
of the C programming level and are independent of the numerical method. For instance,
sets of differential and nonlinear simultaneous equations are written using an expression
syntax such as

x'  = f ( x,  y,  t )
~ g( x,  y)  = h( x,  y)

where the prime refers to the derivative with respect to time (multiple primes such as x' '
refer to higher derivatives) and the tilde introduces an algebraic equation. The algebraic
portion of such systems of equations is solved by Newton's method, and a variety of
methods are available for solving the differential equations (see Chapter 9).

5. Function tables can be generated automatically for efficient computation of
complicated expressions.

6. Default initialization behavior of a channel can be specified.
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Working with range variables

Iterating over nodes

As we mentioned above in How NEURON separates anatomy and biophysics
from purely numerical issues, many anatomical and biophysical properties can vary
along the length of a section, and these are represented in NEURON by range variables.
The syntax 

f or  ( var)  stmt

is a convenient idiom for working with range variables. This statement assigns the
location of each node (in arc length, starting at 0 and ending at 1) to var and then
executes stmt. For example, 

axon f or  ( x)  pr i nt  x* L,  v( x)

will print the membrane potential as a function of physical distance along axon.

Linear taper

If a range variable is a linear, or nearly linear, function of distance along a section, it
can be specified with the syntax

r angevar ( xmin: xmax)  = e1: e2

where the four italicized symbols are expressions. The position expressions must satisfy
the constraint 0 ≤ xmin ≤ xmax ≤ 1. The values of the property at xmin and xmax are e1
and e2, respectively, and linear interpolation is used to assign the values of the property
at the nodes that lie in the position range [xmin, xmax]. If the range variable is di am,
neither e1 nor e2 should be 0, or the corresponding axial resistance will be infinite. As
an example, suppose axon contained the Hodgkin-Huxley spike channels, and we wanted
the density of sodium channels to start at its normal level of 0.12 siemens/cm2 at the 0
end and fall linearly with distance until it becomes 0 at the other end. This could be done
with the statement 

axon. gnabar _hh( 0: 1)  = 0. 12: 0

The actual conductance densities in the individual segments will depend on the value of
nseg, as shown in Table 5.4. This assignment must be executed after the desired value of
nseg has been specified, for reasons that are explained in the next few paragraphs.
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Table 5.4. Effect of nseg on linear variation of sodium channel density
gnabar_hh with distance.

nseg
Segment centers

(in units of arc length)
Channel density
[siemens/cm2]

1 0.5 0.06

2 0.25

0.75

0.09

0.03

3 0.1667

0.5

0.8333

0.1

0.06

0.02

5 0.1

0.3

0.5

0.7

0.9

0.108

0.084

0.06

0.036

0.012

How changing nseg affects range variables

If nseg is increased after range variables have been specified, all old segments are
relocated to their nearest new locations (no instance variables are modified and no
pointers to data in those segments become invalid), and new segments are allocated and
given mechanisms and values that are identical to the old segment in which the center of
the new segment is located. If range variables are not constant, then the hoc  expressions
used to set them should be re-executed. To see why, let us return to our axon with a
linearly tapering gnabar _hh, specified by executing 

nseg = 3
axon. gnabar _hh( 0: 1)  = 0. 12: 0

after which we check by executing 

axon f or  ( x)  pr i nt  x ,  gnabar _hh( x)

which returns

0 0. 1
0. 16666667 0. 1 
0. 5 0. 06 
0. 83333333 0. 02 
1 0. 02

as we expect from Table 5.4 (the values at the 0 and 1 ends are merely copied from the
nearest nodes, and don't really matter since the areas associated with the 0 and 1 ends
are 0). Now we triple the number of nodes and check gnabar _hh by executing 

nseg * = 3
axon f or  ( x)  pr i nt  x ,  gnabar _hh( x)

and see 

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23



The NEURON Book: Chapter 5 November 27, 2004

0 0. 1 
0. 055555556 0. 1 
0. 16666667 0. 1 
0. 27777778 0. 1 
0. 38888889 0. 1 
0. 5 0. 06 
0. 61111111 0. 06 
0. 72222222 0. 06 
0. 83333333 0. 02 
0. 94444444 0. 02 
1 0. 02 

Even though we have nine internal nodes, the spatial gradient for gnabar _hh is just as
crude as before, with only three transitions along the length of our section. To fix this, we
must reassert 

axon. gnabar _hh( 0: 1)  = 0. 12: 0

and when we now test the gradient we find 

0 0. 11333333 
0. 055555556 0. 11333333 
0. 16666667 0. 1 
0. 27777778 0. 086666667 
0. 38888889 0. 073333333 
0. 5 0. 06 
0. 61111111 0. 046666667 
0. 72222222 0. 033333333 
0. 83333333 0. 02 
0. 94444444 0. 0066666667 
1 0. 0066666667 

i.e. gnabar _hh is progressively smaller at each internal node of axon, which is what we
wanted all along. 

What if we decrease nseg? All the new segments will in fact be the old segments
that are nearest to the new segments. Another way to think about this is to see what old
segments contain the new nodes, and those are the segments that will be preserved. This
is what makes it so useful to increase and decrease nseg by the same odd factor, e.g. 3.
So going from nseg = 9 back to nseg = 3 restores our original model with its original
parameter values, even if we don't bother to execute 

axon. gnabar _hh( 0: 1)  = 0. 12: 0

again. If instead we reduced nseg from 9 to 5, the spatial profile of gnabar _hh would
be

0 0. 11333333 
0. 1 0. 11333333 
0. 3 0. 086666667 
0. 5 0. 06 
0. 7 0. 033333333 
0. 9 0. 0066666667 
1 0. 0066666667
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which clearly differs from the result of executing 

nseg = 5
axon. gnabar _hh( 0: 1)  = 0. 12: 0

(see Table 5.4).

Choosing a spatial grid
Designing the spatial grid for a computational model involves a tradeoff between

improving accuracy, on the one hand, and increasing storage requirements and runtime
on the other. The goal is to achieve sufficient accuracy while keeping the computational
burden as small as possible.

A consideration of intent and judgment
The question of how to achieve sufficient accuracy depends in part on what one

means by "sufficient." The answer depends both on the anatomical and biophysical
attributes of the conceptual model and the modeler's intent. Most treatments of
discretization tend to ignore intent, and judgment, its close cousin. Intent and judgment
are inherently tied closely to the particular interests of the individual investigator, so it is
difficult to make general pronouncements about them. However, they can be dominant
factors in the discretization of time and space, as the following two examples
demonstrate. 

Consider a model of a small spherical cell with passive membrane that is subjected to
a depolarizing current pulse (Fig. 5.9). The spatial grid for this isopotential cell only
needs a single node, i.e. this is a situation in which the sole consideration to be weighed is
the discretization of time. 

The middle and right panels in Fig. 5.9 show the analytic solution for membrane
potential Vm (dashed orange trace) along with numeric solutions that were computed

using several different values of ∆t (solid black trace). Clearly it is the numeric solution
computed with the smallest ∆t that best reflects the curvature of Vm in time. Solutions

computed with large ∆t lack the high frequency terms needed to follow the initial rapid
change of Vm (see Analytic solutions: continuous in time and space in Chapter 4).

However, with the advance of time, even the least accurate numeric solution soon
becomes indistinguishable from the analytic solution. Which of these solutions "best"
suits our needs depends on our intent. If it is essential to us that the solution faithfully
captures the smooth curve of the analytic solution, we would prefer to use the smallest ∆t,
perhaps even smaller than 10 ms. But if we are only interested in the final steady state
value of Vm, then ∆t = 40 ms is probably good enough.
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Figure 5.9. A spherical cell (left) with a surface area of 100 µm2 (diameter =
5.64 µm) is subjected to a 1 pA depolarizing current that starts at t = 0 ms.
Resting potential is -70 mV, specific membrane capacitance and resistance are
Cm = 1 µf / cm2 and Rm = 20,000 Ω cm2, respectively (τm = 20 ms). The dashed

orange trace in the middle and right graphs is the analytic solution for Vm. The

solid black traces are the numeric solutions computed with time steps ∆t =
40 ms (thick trace, open circles), 20 ms (medium trace, ×), and 10 ms (thin
trace, diamond, right figure only). Modified from (Hines and Carnevale 2001).

Spatial discretization becomes important in models that are extensive enough for the
propagation of electrical or chemical signals to involve significant delay. We illustrate
this with a model of fast excitatory synaptic input onto a dendritic branch. The synapse in
this model is attached to the middle of an unbranched cylinder (Fig. 5.10). To prevent
possible confounding effects of active current kinetics and complex geometry, we assume
that the cylinder has passive membrane and is five DC length constants long. The
biophysical properties are within the range reported for mammalian central neurons
(Spruston and Johnston 1992). The time course of the synaptic conductance follows an
alpha function with time constant τs and reversal potential Es chosen to emulate an

AMPA synapse (Kleppe and Robinson 1999), and gmax selected to produce a peak

depolarization of approximately 10 mV. We will compare the analytic solution for Vm in

this model with the numeric solution computed for a very coarse spatial grid (∆x = 1 λ).
The numeric solution uses a time step ∆t = 1 µs, which is more than two orders of
magnitude smaller than necessary to follow the EPSP waveform, so that differences from
the analytic solution are almost entirely attributable to the spatial grid. 
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presynaptic
terminal

Figure 5.10. Model of synaptic input onto a dendrite The dendrite is represented
by an unbranched cylinder (top) with diameter = 1 µm, length = 2500 µm, Ra =

180 Ω cm, Cm = 1 µf / cm2, and Rm = 16,000 Ω cm2 with a resting potential of

-70 mV. The DC length constant λDC of the cylinder is 500 µm, so its sealed

end terminations have little effect on the EPSP produced by a synapse located at
its midpoint. The dots are the locations at which the numeric solution would be
computed using a grid with intervals of 1 λDC, i.e. 250, 750, 1250, 1750, and

2250 µm. The synaptic conductance gs is governed by an alpha function

(bottom) with τs = 1ms, gmax = 10-9 siemens, and reversal potential Es = 0 mV.

Modified from (Hines and Carnevale 2001).
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Figure 5.11. Time course of Vm at the synaptic location. The dashed orange line

is the analytic solution, and the solid black line is the numeric solution
computed with ∆t = 1 µs. Modified from (Hines and Carnevale 2001).

Compared to the analytic solution for Vm at the site of synaptic input (dashed orange

trace in Fig. 5.11), the numeric solution (solid black trace) rises and falls more slowly,
and has a peak depolarization that is substantially delayed and smaller. These differences
reflect the fact that solutions based on the coarse grid lack sufficient amplitude in the
high frequency terms that are needed to reproduce rapidly changing signals. Such errors
could lead to serious misinterpretations if our intent were to examine how synaptic input
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might affect depolarization-activated currents with fast kinetics like IA, spike sodium

current, and transient ICa.

The graphs in Fig. 5.12 present the spatial profile of Vm along the dendrite at two

times selected from the rising and falling phases of the EPSP. These curves, which are
representative of the early and late response to synaptic input, show that the error of the
numeric solution is most pronounced in the part of the cell where Vm changes most

rapidly, i.e. in the near vicinity of the synapse. However, at greater distances the analytic
solution itself changes much more slowly because of low pass filtering produced by
cytoplasmic resistance and membrane capacitance. At these distances the error of the
numeric solution is surprisingly small, even though it was computed with a very crude
spatial grid. Furthermore, error decreases progressively as time advances and high
frequency terms become less important. This suggests that the coarse grid may be quite
sufficient if our real interests are in slow processes that take place at some distance from
the site of synaptic input. 
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0 µm
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−66

−65
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Figure 5.12. Vm vs. distance along the dendrite computed during the rising (left) and

falling (right) phases of the EPSP. The analytic and numeric solutions are shown with
dashed orange and solid black lines, respectively. The error of the numeric solution is
greatest in the region where Vm changes most rapidly, i.e. in the neighborhood of the

synapse.

Discretization guidelines
Various strategies have appeared in the literature as aids to the use of judgment in

choosing a spatial grid. One common practice is to keep the distance between adjacent
grid points smaller than some fraction (e.g. 5 - 10%) of the DC length constant λDC of an

infinite cylinder with identical anatomical and biophysical properties (Mainen and
Sejnowski 1998; Segev and Burke 1998). This plausible approach has two chief
limitations. First, large changes in membrane resistance and λDC can be produced by

activation of voltage-dependent channels (e.g. Ih (Magee 1998; Stuart and Spruston

1998)), Ca2+-gated channels (Wessel et al. 1999), or synaptic inputs (Bernander et al.
1991; Destexhe and Pare 1999; Häusser and Clark 1997; Pare et al. 1998). The second
but more fundamental problem is that the spatial decay of transient signals is unrelated to
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λDC. Cytoplasmic resistivity Ra and specific membrane capacitance Cm constitute a

spatially distributed low pass filter, so transient signals suffer greater distortion and
attenuation with distance than do slowly changing signals or DC. In other words, by
virtue of their high frequency components in time, transient signals also have high
frequency components in space. Just as high temporal frequencies demand a short time
step, high spatial frequencies demand a fine grid.

The d_lambda rule

As a more rational approach, we have suggested what we call the "d_lambda rule"
(Hines and Carnevale 2001), which predicates the spatial grid on the AC length constant
λf computed at a frequency f that is high enough for transmembrane current to be

primarily capacitive, yet still within the range of frequencies relevant to neuronal
function. Ionic and capacitive transmembrane currents are equal at the frequency fm =

1 / 2 π τm, so specific membrane resistance Rm has little effect on the propagation of

signals ≥ 5 fm. For instance, a membrane time constant of 30 ms corresponds to fm ~

5 Hz, which implies that Rm would be irrelevant to signal spread at frequencies ≥ 25 Hz.

Most cells of current interest have τm ≥ 8 ms (fm ~ 20 Hz), so we suggest that the distance

between adjacent nodes should be no larger than a user-specified fraction "d_lambda" of
λ100, the length constant at 100 Hz. This frequency is high enough for signal propagation

to be insensitive to shunting by ionic conductances, but it is not unreasonably high
because the rise time τr of fast EPSPs and spikes is ~ 1 ms, which corresponds to a

bandpass of 1
���

r

�
2 � ~400 Hz.

At frequencies where Rm can be ignored, the attenuation of signal amplitude is

described by

log

�
V 0

V x

���
2x � � f RaCm

d
Eq. 5.1

so the distance over which an e-fold attenuation occurs is	
f

�
1
2 
 d� f RaCm

Eq. 5.2

where f is in Hz. For example, a dendrite with diameter = 1 µm, Ra = 180 Ω cm, Cm =

1 µf / cm2, and Rm = 16,000 Ω cm2 has λDC = 500 µm, but λ100 is only ~225 µm.

In NEURON the d_lambda rule is implemented in the CellBuilder, which allows the
maximum anatomical distance between grid points to be specified as a fraction of λ100
using an adjustable parameter called d_l ambda. The default value of d_l ambda is 0.1,
which is more than adequate for most purposes, but a smaller value can be used if τm is
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shorter than 8 ms. For increased flexibility, the
CellBuilder also provides two alternative strategies
for establishing the spatial grid: specifying nseg,
the actual number of grid points; specifying d_X,
the maximum anatomical distance between grid
points in µm. The d_lambda and the d_X rules both
deliberately set nseg to an odd number, which
guarantees that every branch will have a node at its
midpoint. These strategies can be applied to any
section or set of sections, each having its own rule
and compartmentalization parameter. Barring
special circumstances e.g. localized high
membrane conductance, it is usually sufficient to use the d_lambda rule for the entire
model. However, regardless of which strategy is selected, it is always advisable to try a
few exploratory runs with a finer grid to be sure that spatial error is acceptable.

Of course the d_lambda rule can also be applied without having to use the GUI. The
following procedure 

pr oc geom_nseg( )  {
  soma ar ea( 0. 5)  / /  make sur e di am r ef l ect s 3d poi nt s
  f or al l  { nseg = i nt ( ( L/ ( 0. 1* l ambda_f ( 100) ) +0. 9) / 2) * 2 + 1}
}

iterates over all sections to ensure that each section has an odd nseg that is large enough
to satisfy the d_lambda rule. This makes use of the function 

f unc l ambda_f ( )  {  / /  cur r ent l y accessed sect i on,  $1 == f r equency
        r et ur n 1e5*sqr t ( di am/ ( 4*PI *$1*Ra*cm) )
}

which is included in the file

nr n- x. x / shar e/ l i b/ hoc/ st dl i b. hoc  (UNIX/Linux)

or

c: \ nr nxx\ l i b\ hoc\ st dl i b. hoc  (MSWindows)

(x. x  and xx  are used here to refer to the version number of NEURON). This file is
automatically loaded when 

l oad_f i l e( " nr ngui . hoc" )

is executed or the nr ngui  script or icon is launched. Alternatively, st dl i b. hoc  can be
loaded alone with the command 

l oad_f i l e( " s t dl i b. hoc" )

or else f unc l ambda_f ( )  can be recreated by itself with hoc . 

To see how the d_lambda rule works in practice, consider the model in Fig. 5.13,
which represents a granule cell from the dentate gyrus of the rat hippocampus. This
model is based on quantitative morphometric data provided by Dennis Turner (available
from ht t p: / / www. cns. sot on. ac. uk/ ~j chad/ cel l Ar chi ve/ cel l Ar chi ve. ht ml  or
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to clamp fast active currents. 
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ht t p: / / www. compneur o. or g/ CDROM/ nmor ph/ cel l Ar chi ve. ht ml ), and the
biophysical parameters are from Spruston and Johnston (Spruston and Johnston 1992):
Rm = 40 k Ω cm2, Cm = 1 µf / cm2, and Ra = 200 Ω cm. An excitatory synapse attached

to the soma is an excitatory synapse whose conductance is governed by an alpha function
with τs = 1 ms, gmax = 2 · 10-9 S, and reversal potential Es = 0 mV.

The right side of Fig. 5.13 shows the simulated time course of Vm at the soma for

three different methods of specifying the spatial grid: one or three nodes in each branch,
and d_l ambda = 0.3. On the scale of this figure, solutions with d_l ambda ≤ 0.3 are
indistinguishable from each other, so d_l ambda = 0.3 serves as the standard for
accuracy. Plots generated with constant nseg per branch converged toward this trace as
nseg increased. Even the crudest spatial grid (nseg = 1) would suffice if the purpose of
the model were to evaluate effects of synaptic input on Vsoma well after the peak of the

EPSP (t > 7 ms). However a finer grid is clearly necessary if the maximum somatic
depolarization produced by the EPSP is of concern.

Additional refinements to the grid are needed if we want to know how the EPSP
spreads into other parts of the cell, e.g. along the path marked by orange in Fig. 5.14 left.
To compute the maximum depolarization produced by a somatic EPSP along this path, a
grid that has only 3 nodes per branch is quite sufficient (Fig. 5.14 center). If the timing of
this peak is important, e.g. for coincidence detection or activation of voltage-gated
currents, a finer grid must be used (Fig. 5.14 right).
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Figure 5.13. Left: Anatomically complex model of a granule cell from the
dentate gyrus of rat hippocampus. A fast excitatory synapse is attached to the
soma (location indicated by arrow and orange dot). See text for details. Right:
Time course of Vsoma computed using spatial grids with one or three nodes per

branch (thick blue and thin black traces for nseg = 1 and 3, respectively) or
specified with d_l ambda = 0.3 (dashed orange trace). Modified from (Hines
and Carnevale 2001).

The computational cost of these simulations is approximately proportional to the
number of nodes. Least burdensome, but also least accurate, were the simulations
generated with one node per branch, which involved a total of 28 nodes in the model.
Increasing the number of nodes per branch to 3 (total nodes in model = 84) improved
accuracy considerably, but obvious errors remained (Fig. 5.14 right) that disappeared
only after an additional tripling of the number of nodes per branch (total nodes = 252;
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results not shown). The greatest accuracy with least sacrifice of efficiency was achieved
with the grid specified by d_l ambda = 0.3, which contained only 110 nodes.

As these figures suggest, the relative advantage of the d_lambda rule will be most
apparent when signal propagation throughout the entire model must be simulated to a
similar level of accuracy. If the focus is on a limited region, then a grid with fewer nodes
and a simpler representation of electrically remote regions may be acceptable. Special
features of the model may also allow a simpler grid to be used. In principal neurons of
mammalian cortex, for example, proximal dendritic branches tend to have larger
diameters (Rall 1959; Hillman 1979) and shorter lengths (Cannon et al. 1999) than do
distal branches. Therefore models based on quantitative morphometry of such neurons
will have fewer nodes in proximal dendrites than in more distal dendrites if the grid is
specified by the d_lambda or d_X rule. Indeed, many proximal branches may have only
one or three nodes, regardless of which rule is applied, and in such a case the differences
between gridding strategies will be manifest only in the thinner and longer distal
branches. Such differences will have little effect on accuracy if signals in the vicinity of
the soma are the only concern.
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Figure � .14. The EPSP evoked by activation of a synapse at the soma (arrow in left
panel) spread into the dendrites, producing a transient depolarization which grew smaller
and occurred later as distance from the soma increased. The center and right panels show
the magnitude and timing of this depolarization along the path marked by the dashed
orange line. Peak amplitude was quite accurate with nseg = 3 (thin black trace, center
panel), but noticeable error persisted in the time of peak depolarization for distances
between -300 and -150 µm (right panel, especially between ). The dashed orange trace in
the center and right panels was obtained with d_l ambda = 0.3. Time step was 25 µs.
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Chapter 5 Index
%DELTA t 2

3-D specification of geometry 12, 13

3-D information 14, 17

arc3d() 17

calculation of L, diam, area, and ri 14, 16

diam3d() 14

checking 16

diameter 13

problems 16

n3d() 14, 17

number of 3-D points

effect on computational efficiency 14

vs. nseg 14

pt3dadd() 13

A

access 9

accuracy 1, 2

vs. speed 25

anatomical properties

separating biology from numerical issues 2

approximation

of a continuous system by a discrete system 1

area() 13

stylized vs. 3-D surface integral 17

attenuation

at high frequencies 29

axial resistance

infinite 16, 22

B

bandpass 29

biological properties vs. purely computational issues 2
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biophysical properties

separating biology from numerical issues 2

specifying 18

branch

cell 3

branched architecture 2, 8

C

cable

unbranched 3

channel

density 2

cm 4

default value 12

compartment

size 3

vs. biologically relevant structures 3, 6

vs. conceptual clarity 6

complexity 2

computational efficiency 2, 8, 32

conductance

absolute 19

density 19

connect 10

preserving spatial accuracy 11

continuous variable 1

continuous variable

piecewise linear approximation 6, 7

create 10

current

absolute 19

capacitive 29

density 19
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cytoplasmic resistivity 4

D

d_lambda 29

d_lambda rule 29

d_X 30

d_X rule 30

define_shape()

effect on diam, area, and ri 16

diam 4

checking 16

default value 12

specifying

stylized specification 13

tapering 22

updating from 3-D data 17

diameter 4

abrupt change 18

zero or narrow diameter 16

disconnect() 11

discretization

guidelines 28

intent and judgment 2, 25

spatial 1, 2

temporal 1, 25

distance

physical distance along a section 22

distributed mechanism 18-20

distributed mechanism

vs. point process 20

E

electrotonic architecture

spurious effect of changing nseg 11
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equation

algebraic 21

differential 21

error message

diam = 0 16

no message for pt3dadd with zero diameter 16

F

for (x) 22

forall 9

forsec 9

frequency

spatial 29

temporal 29

function table 21

G

geometry 8

artifacts

stylized specification reinterpreted as 3-D specification 16

zero diameter 16

good programming style

program organization 8

H

hoc

idiom

forall nseg *= 3 7

hoc syntax

flow control

break 9

continue 9

return 9

I

IClamp class 20
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insert 19

J

Jacobian

analytic 21

L

L 4

default value 12

specifying

stylized specification 13

updating from 3-D data 17

lambda_f() 30

length 4

length constant

AC 29

DC 28

LinearMechanism class 10

load_file() 30

M

mechanisms

user-defined 21

membrane capacitance 2

membrane current

capacitive 29

ionic 29

membrane potential 4

membrane resistance 28

membrane time constant 29

and attenuation of fast signals 30

model

3-D 17

compartmental 2, 6

computational
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implementation 8

conceptual 25

stylized 13

model properties

specifying 8

N

neurite 3, 14

NMODL 21

nseg 5

effect on spatial accuracy and resolution 6

may reposition internally attached sections and point processes 11

repositions internally attached sections and point processes 20

vs. number of 3-D points 14

why triple nseg? 7

why use odd values? 7

numeric integration

stability 1

numerical error

roundoff 7

spatial 6

temporal

effect of spatial discretization 27

O

object reference 20

object reference

objref 20

P

point process 19

creating 19

destroying 19

effect of nseg on location 20

inserting 19
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loc() 20

preserving spatial accuracy 7

specifying attributes 19

vs. distributed mechanism 20

psection() 12

push_section() 9

Q

quantitative morphometric data 8, 13, 14, 32

R

Ra 4

default value 12

range 4

range variable 4

effect of changing nseg 23, 24

estimating by linear interpolation between nodes 7

inhomogeneous

reassert after changing nseg 23

iterating over nodes 22

linear taper 22

rangevar(x) returns value at nearest internal node 5

ri

infinite 16, 22

rise time 29

run time 8

S

secname() 16

section 3

array 12

child 11

connect 0 end to parent 14

currently accessed

default section 9
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dot notation 5, 6, 8

section stack 9

default section vs. root section 11

equivalent circuit 15

iterating over sections 16, 30

nodes 5

internal vs. terminal 5

locations 5

zero area 7

parent 11

root section 11

vs. default section 11

section variable 4

SectionRef class 9

segment 5

separating biology from numerical issues 2

Shape object

creating

effect on diam, area, and ri 17

Shape plot 12

creating

effect on diam, area, and ri 17

signal

chemical 26

electrical 26

spatial accuracy 6

checking 7

second order 6

preserving 7, 11

spatial decay of fast signals 28

specific membrane capacitance 2, 4

specific membrane resistance 29
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stdlib.hoc 30

stylized specification of geometry 12, 13

calculation of area and ri 13

reinterpretation as 3-D specification 16

syntax error

example 9

system

continuous 6

T

topology 8

checking 11, 12

loops of sections 10

specifying 10

viewing 12

topology() 11

V

v 4
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