Building, Running, and Visualizing

Parallel NEURON Models

Robert A. McDougal
Yale School of Medicine

5-6 December 2016



Overview



What is the course?

This course will give experienced NEURON modelers the best-practices
background needed to design, run, and analyze parallel network models with
morphologically detailed neurons.

The guiding philosophy is that a network consists of many instances of cell
objects. All cell models should stand alone (for development and analysis
purposes), but should be written in a way that they can be combined into parallel
network models.

What isn't this course?
This course is not:
o GUI driven.
@ A basic introduction to NEURON or parallel programming.

@ An exhaustive presentation of every known parallel NEURON strategy.




-} RunControl

’> somawv(.3)
{\I | | | ]

IClamp[0)
at: somaf.5
]

40
i}
40
a0
[} VariableTimeStep

Use variable dt
0.001 i

neuron.yale.edu

Forum: neuron.yale.edu/phpBB
Scripting tutorial: neuron.yale.edu/neuron/static/docs/neuronpython /firststeps.html
List of publications (over 1600) using NEURON: neuron.yale.edu/neuron/static/bib/usednrn.html



\T = ST | ron neuren snpr 1, 136

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 20

by b
- e TAas] | oo || catons || wos i | o it item | -= 3o
o pr——
= e S o
e — iy A
T el 1 ey def srint_nodes)
i Shincatev) for v in node. states)
prine “astining raa
[Ep— Pegion = rad-Begion(h.at1sec(), nra_regton
T [ —— Speciestregions m
Channe(s}: | Na.t; | L high threshold: | N: 1 T low thrsshole: 1 A: 1 K: | h: reaction = rxd.Rate(ca,
N finiciaize0
e | merseetat 2010
e o, Morse TM, Camevaie NT, Mutalik PG, d GM (2010) Abnorr

M Od el D B.yale.edu

ModelDB is a resource for discovery, sharing, and analysis. ModelDB provides source code for
approximately 1150 published computational neuroscience models on 139 topics with at least 48
types of ion channels/pumps/etc; code for at least 76 different simulation environments is available.



Why use parallel computation?

Two reasons:
@ “Faster” run-time simulations.

@ Support for large models that do not fit on one machine.

What are the downsides?

Parallel models introduce:

@ Greater programming complexity.
@ New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.




Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors

| \

Cells can communicate by
@ logical spike events with significant axonal, synaptic delay.

@ postsynaptic conductance depending continuously on presynaptic voltage.

@ gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines. |

| A

A parallel model can fall in 1, 2, or 3 of these classes.



Getting started



Connecting to MPI and to NEURON

Connect to MPI:

from mpi4py import MPI

Connect to NEURON:

from neuron import h

Connect to NEURON when running locally:

from neuron import h, gui



Test parallel NEURON

Test script (test.py):

from mpi4py import MPI
from neuron import h

pc = h.ParallelContext ()
id = int(pc.id())

nhost = int(pc.nhost())
print id, "of", nhost

Run with:

mpiexec -n 4 python test.py

Output (if successful; order may vary):

of 4
of 4
of 4
of 4

N W+~ O

Note: If instead, you see 4 NEURON
headers and 4 “0 of 1" messages, then
NEURON has not been compiled with
parallel support. Recompile with the
--with-paranrn flag.



Test parallel NEURON (with Slurm)

Create job file with Slurm options
#!/bin/bash

#SBATCH -J test # Job name

#SBATCH -o job.%j.out # Name of stdout output file
#SBATCH -n 50 # Total number of cores
#SBATCH -t 00:01:00 # Run time (hh:mm:ss)

mpiexec python testmpi.py

| \

Submit the job
sbatch job.mpi

Here job.mpi is the name of the job file created above.

| A

View output when done

cat mysim.460.out

Here 460 was the job number returned from the sbatch command.

The Slurm Workload Manager is available from https://slurm.schedmd.com/



Building a model (part 1)




Neuronal building block: the Section

A Section in NEURON is an unbranched stretch of e.g. dendrite.

To create a Section, use h.Section and assign it to a variable:
dendl = h.Section()

A Section can have multiple references to it. If you set a = dend1, there is still
only one Section. Use == to see if two variables refer to the same section:
print (a == dendl) True

It is strongly recommended to name Sections and to identify what cell they
belong to:

soma = h.Section(name='soma', cell=myCell)

Here myCell can be any Python object, but in practice it is best if this is an
instance of a cell class.
To access the name or cell, use .name() or .cell():

print (soma.name()) soma

In recent versions of NEURON, named Sections will print with their name; e.g. it suffices to say print (soma).



Sections and Segments

—_—
mechanisms
QO Sections are unbranched lengths of continuous cable
connected together to form a neuron.
segment
O Do not confuse sections with segments! section segment
segment

QO Sections are divided into segments of equal length
for numerical simulation purposes (see nseg).

axon




Tip: Define a cell inside a class

Consider the code

class Pyramidal:
def __init__(self):
self.soma = h.Section(name='soma', cell=self)

The _init__ method is run whenever a new Pyramidal cell is created, e.g. via
pyrl = Pyramidal()

The soma can be accessed using dot notation:
print (pyrl.soma.L)

By defining a cell in a class, once we’re happy with it, we can create
multiple copies of the cell in a single line of code.

pyr2 = Pyramidal()

or even

pyrs [Pyramidal() for i in range(1000)]



Tip: Define a cell inside a class

It will be convenient to assign an identifier (gid), specify morphology in a
dedicated method, and add a __repr__ method to identify the object.

class Pyramidal:
def __init__(self, gid):
self._gid = gid
self._setup_morphology ()
def _setup_morphology(self):
self.soma = h.Section(name='soma', cell=self)
def __repr__(self):
return 'Pyramidal([’d]' % self._gid

Here, the gid should be a globally unique identifying integer. We do not use class
variables to generate the integer automatically because: (1) the numbers should
not repeat between different processors, and (2) we may wish to recreate a single
specific cell instead of the entire network.



Length and diameter

Set a section’s length (in #m) with .L and diameter (in pm) with .diam:
sec.L = 20

sec.diam = 2
Note: Diameter need not be constant; it can be set per segment.

To specify the (x,y, z; d) coordinates that a section passes through, use
h.pt3dadd.

Warning: the default diameter is based on a squid giant axon and is not
appropriate for modeling mammalian cells. Likewise, the temperature
(h.celsius) is by default 6.3 degrees (appropriate for squid, but not for
mammals).



Connecting sections

To reconstruct a neuron'’s full branching structure, individual sections must be
connected using .connect:
dend?2.connect (dend1 (1))

Each section is oriented and has a 0- and a 1-end. In NEURON, traditionally the
0-end of a section is attached to the 1-end of a section closer to the soma. In the
example above, dend2's 0-end is attached to dendl's 1-end.

o dend2 1
? dend1 4 .

To print the topology of cells in the model, use h.topology (). The results will
be clearer if the sections were assigned names.
h.topology ()

If no position is specified, then the 0-end will be connected to the 1-end as in the example.



Example

Python script:

from neuron import h, gui

class Pyramidal:

def

__init__(self, gid):
self._gid = gid
self._setup_morphology ()
_setup_morphology(self):
self.soma = self._section(’soma’)
self.papic = self._section(’papic’)
self.apicl, self.apic2, self.pb, self.dbl, self.db2 = [

self._section(name) for name in

[’apicl’, ’apic2’, ’pb’, ’dbi’, ’db2’]]

self.papic.connect(self.soma)
self.pb.connect (self.soma(0))
self.apicl.connect (self.papic)
self.apic2.connect (self.papic)
self.dbl.connect(self.pb)
self.db2.connect (self.pb)
_section(self, name):
return h.Section(name=name, cell=self)
__repr__(self):
return ’plid]’ % self._gid

myPyramidal = Pyramidal(0)
h.topology ()

ps = h.PlotShape()

# use 0

instead of 1 to show diams

ps.show (1)

pl0].soma(0-1)

p[0] .proxApical (0-1)
pl0].apic1(0-1)
pl0].apic2(0-1)

p[0] .proxBasal(0-1)

p[0] .distBasall(0-1)

pl[0].distBasal2(0-1)

“
“
‘|
‘l
‘l

Morphology:
Cvstskiigé? A”’S§SZ;~’

\ proxBasal soma roxApical
3‘53\ P p P S/O/'c
g8 7

Note: PlotShape can also be used to see the distribution of a parameter or calculated

variable. To save the image in plot shape ps use ps.printfile('filename.eps')

The PlotShape window can be opened from the GUI by selecting Graph - Shape Plot.



uroMorpho.Org for realistic morphologies

G NeurdMorpho.Org % L

Version 6.1 - Released: 05/13/2015 - Content: 31982 neurons

Rotated (vs Raw view)
how Points
"Show Diam

View al types

| Select pont
Selectid [T ]

Edit

Euteclic fter facis|

Tools p Miscellaneous p Import 3D

@ NeuroMorpho.Org is home to 50,356 reconstructed neurons from 212 cell
types and 37 SPeCi€s as of October 24, 2016.

@ Warning: not every morphology was reconstructed with the intent of being
in a simulation. Before using: rotate to check for z-axis errors, check to
make sure the diameters are not all equal.

@ Use the Import 3D tool to import morphologies into NEURON. For details,
see: neuron.yale.edu/neuron/docs/import3d



Exercise

Download and examine the following three CA1 pyramidal cell morphologies (use
the “standardized” version). Which is most appropriate for simulation?

@ http://tinyurl.com/neuromorpho-n123

I

@ http://tinyurl.com/neuromorpho-c91662

i

e http://tinyurl.com/neuromorpho-calsynteninKO

!



PyNeuron-Toolbox

To see a live demo in a Jupyter Notebook: CLICK HERE

The NEURON simulation environment is one of the most popular options for simulating multi-compartment neuron
models. Hines et al. (2009) developed a module that allowed users to execute simulations from python. This option
appears to be very popular with users.

However, much of the data analysis capabilities of NEURON (e.g. shape plots) are still limited to the traditional

InterViews plotting environment. This toolbox provides some functions to do data analysis and visualization in

matplotlib. One of the advantages of this approach is that plots and animations can be easily shared with other
researchers in iPython notebooks.

Disclaimer: This code is only a side project at the moment. Use with caution and let me know if you find any
unexpected behaviors. Feature requests are also welcome.

https://github.com/ahwillia/PyNeuron-Toolbox

git clone https://github.com/ahwillia/PyNeuron-Toolbox.git

Either install or copy the PyNeuron-Toolbox folder into the project directory.



Loading a morphology with PyNeuron-Toolbox

Python script: Output:

from neuron import h, gui
from PyNeuronToolbox import morphology

class Pyramidal:
def __init__(self, gid):
self._gid = gid
self._setup_morphology()
def _setup_morphology (self):
self.soma, self.axon = [1, []
self.dend, self.apic = [1, []
morphology.load(’c91662.swc’, fileformat=’swc’,
cell=self)
def __repr__(self):
return ’plid]’ % self._gid

myPyramidal = Pyramidal(0)

ps = h.PlotShape()
ps.show(1)

Built-in support for instantiating morphologies into Python class is available in NEURON 7.5, the current development version.



Aside: version control



Version control: git

Why use version control?

@ Protects against losing working code: if something used to work but no
longer does, you can test previous versions to identify what change caused
the error.

@ Provides a record of script history: authorship, changes, ...

@ Promotes collaboration: provides tools to combine changes made
independently on different copies of the code.




Version control: git basics

Setup
git init
Declare files to be tracked
git add FILENAME
Commit a version (so can return to it later)
git commit -a
Return to the version of FILENAME from 2 commits ago

git checkout HEAD"2 FILENAME



Version control: git

View list of changes

git log

Remove a file from tracking

git rm FILENAME

Rename a tracked file

git mv OLDNAME NEWNAME



Version control: git and remote servers

git (and mercurial) is a distributed version control system, designed to allow you
to collaborate with others. You can use your own server or a public one like
github or bitbucket.

Download from a server
git clone http://URL.git
Get changes from server and merge with local changes
git pull
Sync local, committed changes to the server

git push



Version control: syncing data with code

One simple way to ensure you always know what version of the code generated

your data is to include the git hash in the filename. The following function can
help:

def git_hashQ):
import subprocess

suffix = "'
if subprocess.check_output(['git', 'diff']):
suffix = '+'

return 'Ys%s' % (subprocess.checkoutput ([
'git', 'log', '-1', '--pretty=format:%h']), suffix)

Then, for example, save matplotlib graphics with:
pyplot.savefig('filename_ ' + git_hash() + '.pdf')



Building a model (part 2)




Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?



Working with multiple cells

To can create a method to reposition a cell and call it from __init__:

class Pyramidal:

def _shift(self, x, y, z): def __init__(self, gid, x, y, 2z):
for sec in self.all: self._gid = gid
n = int(h.n3d(sec=sec)) self._setup_morphology()
xs = [h.x3d(i, sec=sec) for i in range(n)] self._shift(x, y, z)
ys = [h.y3d(i, sec=sec) for i in range(n)]
zs = [h.z3d(i, sec=sec) for i in range(n)] def _setup_morphology(self):
ds = [h.diam3d(i, sec=sec) for i in range(n)] self.soma, self.axon = [], []
i=0 self.dend, self.apic = [1, []
for a, b, ¢, d in zip(xs, ys, zs, ds): morphology.load(’c91662.swc’,
h.pt3dchange(i, a + x, b + y, ¢ + z, d, sec=sec) fileformat=’swc’,
i+=1 cell=self)

Now if we create ten, while specifying offsets,
mypyrs = [Pyramidal(i, i * 100, O, 0) for i in range(10)]
The PlotShape will show all the cells separately:




Does position matter?

Sometimes.

Position matters with:
@ Connections based on proximity of axon to dendrite.
@ Connections based on cell-to-cell proximity.

@ Extracellular diffusion.



Llon channel specification: NMODL
3

O Used for low-level mechanisms (e.g. synapses,
integrate-and-fire cells) that need to be fast

Q Translated directly into C code, then compiled
O Good for:

= Being really fast

= Handling nuisances like units

= Being really fast
0 Bad because:

= Steep learning curve
= VERBATIM blocks can be scary

Vincent Villafranca, 2011



%Ion channel specification: NMODL

O Example: voltage-gated K* channel

NEURON

{

SUFFIX kd
USEION k READ ek WRITE ik
RANGE gbar, g,

)

i

UNITS {
(8) = (siemens)
(mv) = (millivolt)
(ma) = (milliamp)

)

PARAMETER { gbar =

ASSIGNED {
v (mV)
ek (mV)
ik (mA/cm2)
i (mA/cm2)
g (S/cm2)

}

BREARKPOINT {
SOLVE states METHOD cnexp
g = gbar * n*4

i=

ik =

g *
i

(v - ek)

0.036

(S/cm2)

)

INITIAL {
n = alpha(v)/(alpha(v) + beta(v))
}

DERIVATIVE states {

n' (1-n) *alpha(v) - n*beta(v)
}
FUNCTION alpha(Vm (mV)) (/ms) {
LOCAL x
UNITSOFF

x = (Vm+55) /10
if (fabs(x) > le-6) {

alpha 0.1*x/(1 - exp(-x))
} else {

alpha 0.1/(1 - 0.5*x)
} UNITSON

)

FUNCTION beta(Vm (mV)) (/ms) {
UNITSOFF
beta = 0.125%exp (- (Vm+65) /80)
UNITSON



lon channel specification

In addition to NMODL, two other options allow compiled-speed ion channels:
@ Channels may be defined with NEURON's ChannelBuilder tool.

e This instantiates KSChan objects, which define the channel.

@ Channels may be defined using LEMS (NeuroML) and converted to NMODL
via jNeuroML.



Channelpedia (Channelpedia.epfl.ch)

@ Home to information
about ion channels.

@ Many channels have
one or more
associated models
(e.g. different
species or cell types);
all are downloadable
as MOD files.

- @ Shows gating

g YA variable and channel
; : response to voltage
clamp for each
model.




ModelDB (modeldb.yale.edu

Calcun

Trigh treshoid

Tiow reshod

Cileax

Mixed

o siow

Potassium

KiZleak

o ook

Sodium

Naca

TaieNe

@
TRVE

NalCa sxchanger

Nark pump.

Osmosisdnven

Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)
Downlosd zipfle  Auto-launch
Help downloading and running models
ModelInformation | ModelFie | Ciations  Model Views  Versions
Accession: 151458

‘We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic

spines with potentials. The producing
could calcium ts and in

distal synapic spines during up and down states.

Reference:

1. Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the timing of cortical and
dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:118 [Pubed]
Model Information (Ciick on a link to find other models with that property)

Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Reglon(s)/Organisr:

Cell Type(s): Neostriatum spiny direct pathway neuron;

INa,p; I Na; 1L high threshold; | A; 1 K; | Kleak; 1 K.Caj | CAN; | Sodium; | Calcium; | Potassium; | A, siow; | Krp; | R; 1 Q; | Na, leak;
Channel(s):

1Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):

Simulation Environment: NEURON;
Maodel Concept(s): Leaming; STOP; C:
Implementer(s): Nakano, Takashi [nakano.takashi at gmal.com];

3 STOP,

Search Neu

 D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; | Na.p; | Na.t; | L
mgnmmsnma IA 1; I K leak; | K,Ca; | CAN; | Sodium; | Calcium; | Potassium; | A, slow; | Krp; | R; 1 Q; | Na, leak; | Ca,p; Ca pump;

ModelDB offers links to models with many channel types, but

they are classified by publication not channel, so you wil

| have
to locate the specific file you need.



|CGenealogy: ion channel metadata

Model Information | Mod

Download the displayed file

o/
©CAI_abeta
Otranslate
' readme himl
o cacumm.mod
Beagkimod*
bcal2.mod
b canzmod*
Bcatmod *

Ddistrmod *

Dh.mod

Dipulse2.mod *

D kadistmod
Dkaprox.mod
Dkdreat.mod
 nadn.mod
Dnaxn.mod *

D zcaquantmod

D aBetahoc
nadd_ca.hoc
DbAP_peak_vecs.hoc
Dc91662.se5

D CO1662_Link.xt

D cond_report.hoc

i control_boxes.hoc

D distribu nts.hoc
Dfiglipg

Dfig2jpg

Citations | Model Views

TITLE Cagk

Calciun activated K channel.

Hodified from Moczydlowski and Latorre (1983) 3. Gen. Physiol. 82
s ¢
(solar) = (1/1iter)

«

() = (millivolt)
(w4) = (nillianp)

(m) = (nillinolar)

NEURG

GLOBAL oinf, tau

s
FARADAY = (faraday) (Kkilocoulombs)
R = 8313424 (joule/degC)

}

PARAMETER {
celsius  (dege)

gbar=.01  (mho/cn2) ¢ Maximum Permeability

ASSTGNED {
ik

(macn2)

@ Simulation Platform |~ 30 print

General data

ICG id: 2464

® ModelDB id: 87284

o Reference: Morse TM, Carnevale NT, Mutalik PG, Migliore M,
Shepherd GM (2010): Abnormal Excitability of Oblique Dendrites
Implicated in Early Alzheimer's: A Computational Study.

Metadata classes

Animal Model: rat

Brain Area: hippocampus, CA1
Classes: KCa

lon Type: K

Neuron Region: unspecified
Neuron Type: pyramidal cell
Runtime Q: Q4 (slow)
Subtype: not specified

Metadata generic

e Age: 7-14 weeks old.

e Comments: Calcium activated k channel, modified from
moczydlowski and latorre (1983). From hemond et al. (2008),
model no. 101629, with no changes (identical mod file). Animal
model taken from chen (2005) which is used to constrain model.
Channel kinetics from previous study on hippocampal pyramidal
neuron (hemond et al. 2008)

e Runtime: 76.722

When viewing most mod files describing an ion channel, an ICGenealogy button
appears. Clicking this button loads the corresponding page of the ICGenealogy
database which shows curated information about the channel model (how it was
derived, information about the underlying data, etc) and response curves.

Podlaski, Seeholzer, Vogels



Always review dynamics you borrow

Suppose you found a mechanism on ModelDB with SUFFIX na3.

After compiling it (nrnivmodl), you can use PyNeuron-Toolbox to examine its
I-V curve:

from neuron import h
from PyNeuronToolbox import channel_analysis
from matplotlib import pyplot

h.CVode() .active(1)

ina, v = channel_analysis.ivcurve(’na3’, ’ina’)
pyplot.plot(v, ina)

pyplot.show()

https:/ /senselab.med.yale.edu/ModelDB /showmodel.cshtm|?model=87284&file=/CA1_abeta/na3n.mod

To see additional options for IV-curve analysis, do help(channel_analysis.ivcurve)



Inserting distributed mechanisms

Use .insert to insert a distributed mechanism into a section. e.g.
axon.insert('hh')

Inserting point processes

To insert a point process, specify the segment when creating it, and save the
return value. e.g.
pp = h.IClamp(soma(0.5))

To find the segment containing a point process pp, use
seg = pp.get_segment ()

The section is then seg.sec and the normalized position is seg.x.
The point process is removed when no variables refer to it.
Use List to find out how many point processes of a given type have been defined:

all_iclamp = h.List('IClamp')
print ('Number of IClamps:')
print (all_iclamp.count())




Setting and reading parameters

In NEURON, each Section has normalized coordinates from 0 to 1.

To read the value of a parameter defined by a range variable at a given normalized
position use: section(x).MECHANISM.VARNAME

e.g.
gkbar = apical(0.2).hh.gkbar
Setting variables works the same way:
apical(0.2) .hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken
into (each potentially with their own value for range variables), use
section.nseg:

apical.nseg = 11
To specify the temperature, use h.celsius:

h.celsius = 37



Setting and reading parameters

Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

for segment in apical:
segment.hh.gkbar = 0.037

The above is equivalent to apical.gkbar hh = 0.037, however the first version
allows setting values nonuniformly.

A list comprehension can be used to create a Python list of all the values of a
given property in a segment:

apical_gkbars = [segment.hh.gkbar for segment in apicall

Note: looping over a Section only returns true Segments. If you want to include
the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead.

The HOC instruction for(x) includes the 0 and 1 voltage-only nodes when iterating and is equivalent to using section.allseg().



Example: discretize, declare channels, set parameters

class Pyramidal:

def __init__(self, gid):

self._gid = gid
self._setup_morphology ()
self._discretize()

Remember: you
typically want to
have an odd number

self._add_channels()
def _setup_morphology(self):
self.soma, self.axon = [1, []
self.dend, self.apic = [1, []
morphology.load(’c91662.swc’, fileformat=’swc’, cell=self)
def __repr__(self):
return ’p[%d]’ % self._gid
def _discretize(self, max_seg_length=20):
for sec in self.all:
sec.nseg = 1 + 2 * int(sec.L / max_seg_length)
def _add_channels(self):
for sec in self.soma:
sec.insert(’hh’)
for sec in self.all:
sec.insert(’pas’)
for seg in sec:
seg.pas.g = 0.001

of segments so there
is a node at the
middle.

When refining a
mesh, multiply by
an odd number to
preserve old nodes.

for sec in self.all:
sec.nseg *= 3

An alternative discretization strategy is to use the d_lambda rule:
def _discretize(self):
h.load_file(’stdlib.hoc’)
for sec in self.all:
sec.nseg = int((sec.L/(0.1%h.lambda_f(100)) + .9)/2.)%2 + 1



Tools — ModelView

X/ ModelView[0]




Example: adding a synapse, giving it artificial stimulation,

recording data, running simulation

from neuron import h
from PyNeuronToolbox import morphology
from matplotlib import pyplot

h.load_file(’stdrun.hoc’)
# class Pyramidal defined as before
myPyramidal = Pyramidal(0)

postsyn = h.ExpSyn(myPyramidal.dend[0] (0.5))
postsyn.e = 0 # reversal potential

stim = h.NetStim()

stim.number = 1

stim.start = 3

ncstim = h.NetCon(stim, postsyn)
ncstim.delay = 1
ncstim.weight[0] = 1

t = h.Vector()

t.record(h._ref_t)

v = h.Vector()
v.record(myPyramidal.soma[0] (0.5) . _ref_v)

pc = h.ParallelContext ()
pc.set_maxstep(10)
h.v_init = -69

h.stdinit ()
pc.psolve(10)

pyplot.plot(t, v)
pyplot.xlabel(’t (ms)’)
pyplot.ylabel(’v (mV)’)
pyplot.show()

v (mv)
|

t (ms)



Building synapses

PreCell PostCell




Configuring the presynaptic connection site

PreCell

Create cell only where the gid exists: Associate gid with spike source:
if pc.gid_exists(7): nc = h.NetCon(PreSyn, None, sec=presec)
PreCell = Cell() pc.cell(7, nc)

PreSyn here is a pointer.



Configuring the postsynaptic connection site

PostCell

Create NetCon on node where target exists:

nc = pc.gid_connect (7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.



Spike exchange method

PreCell PostCell




Spike exchange method

PreCell

PostCell

PostSyn




Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1

gid 7 ~|gid 7

t _2.gys|MPLAllGather 51y 5875
gid —— Olgid ——
t t

cpu 3



Spike exchange method

PreCell PostCell

n 1 n 1

gid 7 ~|gid 7
t 2.875 3t 2875
gid —— Olgid ——
t — t

t 0

Y 2
1 | — 1 o
0 2 4 6



Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)
h.stdinit ()
pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set_maxstep. In general, larger
intervals are better because they reduce communication overhead.

spikes here are delivered here
min delay

exchange exchange

pc.set_maxstep must be called on each node; it uses MPT_Allreduce to
determine the minimum delay.



Adding a presynaptic site

class Pyramidal:

def __init__(self, gid):
self._gid = gid
self._setup_morphology ()
self._discretize()
self._add_channels()
self._register_netcon()

def _register_netcon(self):
self.nc = h.NetCon(self.soma[0](0.5)._ref_v, None, sec=self.somal[0])
pc = h.ParallelContext ()
pc.set_gid2node(self._gid, int(pc.id()))
pc.cell(self._gid, self.nc)

# the rest of the class stays unchanged

For most models, the delay due to axon propagation can be incorporated into a
synaptic delay and thus it suffices to only make one connection point at the soma
or axon hillock.

pc.set_gid2node must be called before pc.cell.



Building a two cell network

class Network:
def __init__(self):
self.cells = [Pyramidal(i) for i in range(2)]
# setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0
# connect cell O to cell 1
pc = h.ParallelContext ()
pre = 0
post =1
self.nc = pc.gid_connect(pre, self.syns[post])
self.nc.delay = 1
self.nc.weight[0] = 1

n = Network()

Note: we use for loops and list comprehensions even when there is only two cells
to avoid repeating ourselves (the DRY-principle) and to allow future
generalization.



Running the two cell network

# drive the Oth cell

stim = h.NetStim()

stim.number = 1

stim.start = 3

ncstim = h.NetCon(stim, n.syns[0])

ncstim.delay = 1 a0
ncstim.weight[0] = 1

20
t = h.Vector()

t.record(h._ref_t)
v = [h.Vector() for cell in n.cells]
for myv, cell in zip(v, n.cells):

s
myv.record(cell.soma[0] (0.5)._ref_v) §7m
pc = h.ParallelContext() 0
pc.set_maxstep(10)
h.v_init = -69 =60
h.stdinit ()
pc.psolve(10) 80

t(ms)
for myv in v:
pyplot.plot(t, myv)
pyplot.xlabel(’t (ms)’)
pyplot.ylabel(’v (mV)’)
pyplot.show()



Exercise: Generalizing to n cells in a ring network

How can we generalize to a ring network with n cells?

0—>1—>2—>3—>—n-1

Hint: As i increases, i % ncounts: 0,1,2,...,n—1,0,1,...



Solution: Generalizing to n cells in a ring network (100ms)

class Network:
def __init__(self, num):
self.cells = [Pyramidal(i) for i in range(num)]
# setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0
# connect cell i to cell (i + 1) % num
pc = h.ParallelContext ()
self.ncs = []
for i in range(num):
nc = pc.gid_connect(i, self.syns[(i + 1) % num])
nc.delay = 1
nc.weight[0] = 1
self.ncs.append(nc)

n = Network(20)




Storing spike times

With 20 cells, it is hard to distinguish the cells when simultaneously plotting the
membrane potentials. Let's just store the spike times.

We begin by modifying Pyramidal. register netcon:

def _register_netcon(self):
self.nc = h.NetCon(self.soma[0](0.5)._ref_v, None, sec=self.somal[0])
pc = h.ParallelContext ()
pc.set_gid2node(self._gid, int(pc.id()))
pc.cell(self._gid, self.nc)
self.spike_times = h.Vector()
self.nc.record(self.spike_times)

When the simulation is over, we can print out the spike times:

for i, cell in enumerate(n.cells):
print (°%d: %r’ % (i, list(cell.spike_times)))

Beginning of output:

0: [4.600000000100032, 36.62500000009977, 69.12500000010715]
1: [6.200000000100054, 38.25000000010014, 70.75000000010752]
2: [7.800000000100077, 39.875000000100506, 72.37500000010789]
3: [9.4000000001, 41.500000000100876, 74.00000000010826]



Storing spike times: JSON

To store spike times in JSON, we can use the following code:
import json
with open(’output.json’, ’w’) as f:
f.write(json.dumps ({
i: list(cell.spike_times)
for i, cell in enumerate(n.cells)},
indent=4))

This creates a file output. json which begins:
"0": [
4.600000000100032,
36.62500000009977,
69.12500000010715

nqn, [
6.200000000100054,
38.25000000010014,
70.75000000010752

ll2lI: [
7.800000000100077,
39.875000000100506,
72.37500000010789

JSON is a standard format for data interchange. Libraries are available for most programming languages.



Raster plots

25

20 - | |

15F \ \ [

10 [ [ \

0 20 40 60 80 100

for i, cell in enumerate(n.cells):
pyplot.vlines(cell.spike_times, i + 0.5, i + 1.5)
pyplot.show()



Simple parallelization strategy: round-robin.

Processor 1 Processor 2

Processor 3 Processor 4



Simple parallelization strategy: round-robin.

CPUO

pc.id 0
pc.nhost 5
ncell 14

gid

0

5

10

CPU 3

pc.id 3
pc.nhost 5
ncell 14

gid

3

8

13

An efficient way to distribute, especially if all cells similar:
for gid in range(int(pc.id()), ncell, int(pc.nhost())):
pc.set_gid2node(gid, int(pc.id()))

CPU 4

pc.id 4
pc.nhost 5
ncell 14

gid

4

9

(Note: the body is executed at most [ncell/nhost]| times, not ncell.)



Parallelizing our ring network

Very few changes are necessary.

An extra import at the very beginning:
from mpidpy import MPI

The Network class only instantiates gids on the current processor.

class Network:
def __init__(self, num):
pc = h.ParallelContext()
mygids = list(range(int(pc.id()), num, int(pc.nhost())))
self.cells = [Pyramidal(i) for i in mygids]
# setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0
# connect cell (i - 1) % num to cell i
self.ncs = []
for i, syn in zip(mygids, self.syns):
nc = pc.gid_connect((i - 1) % num, syn)
nc.delay = 1
nc.weight[0] = 1
self.ncs.append(nc)



Parallelizing our ring network

We must modify the initial netstim to ensure it only attaches to gid 0 not to the

Oth cell in each process.

# drive the Oth cell
if pc.gid_exists(0):

stim = h.NetStim()

stim.number = 1

stim.start = 3

ncstim = h.NetCon(stim, n.syns[0])
ncstim.delay = 1

ncstim.weight[0] = 1

Finally, we modify the write to do it on a per-processor basis:

with open(’outputid.json’ % int(pc.id()), ’w’) as f:
f.write(json.dumps({cell._gid: list(cell.spike_times) for cell in n.cells},

indent=4))



Optional: use pc.py_alltoall to send all spikes to node 0

local_data = {cell._gid: list(cell.spike_times) for cell in n.cells}
all_data = pc.py-alltoall([local_data] + [Nonel * (int(pc.nhost()) - 1))

if pc.id() == 0:

# only do output from node 0

import json

combined_data = {}

for node_data in all_data:
combined_data.update(node_data)

with open(’output.json’, ’w’) as f:
f.write(json.dumps(combined data, indent=4))



Performance: MPI scaling

Santhakumar et al. (2005)

coll number

CINECA 1M Linux cluster
EPFL IBM Blue Gene

»

0 5 100 150 200 250
time (ms)

Davison et al., (2003)

500

o Mkl b -
0 100 200 300 400 500

time (ms)

8 16 32 64 128 256 512
number of processors

32 64 128 256 512
number of processors

32 64 128 256 512

8 16
number of processors.

A)

cell number

extended (160,000 cells) Bush et al (1999) model
on the EPFL IBM BlueGene

160¢10°

140¢10°

120¢10°

100x10°

g 8

10000 cells

o

160000 cells s

50 125 250 500 1000 2000 4000 8000

number of processors



Performance: Spike exchange strategies

MPI_ISend - Two Phase, Two Subinterval ArtIfICIal Splklng Net

A

A Allgather

® DCMF_Multicast - Two Phase, Two Subinterval Blue Gene/P

O Record-Replay - One Subinterval .

+ Computation Time (includes queue) Argonne National Lab

Strong Scaling
32 ~

5 2M Cells < 1/4M Cells
@ @
816 - 1k Connfcell 216 = N 10k Conn/cell
@ @ N
£ 8 £ 8 N
€ € N
5 5
€ 4 X 4
2 2
1+ 1=
05 J 0.5 | | NE J
8 16 32 64 138 8 16 32 64 128
K processors K processors
Weak Scaling
30 30 —
o o
CD @
8 A,,__A——A*H g
o @
E2 | E2 |-
5 1k Conn/cell 5 10k Conn/cell
4 4
10 10
2M cells 32M cells 1/4M cells 4M cells
0 1 1 1 1 0 1 1 1 1 1 )
8 16 32 64 128 8 16 32 64 128

K processors K processors



Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.



Suppose we now realize we want to know the time series of the m variable in the
center of the soma of cell 5. We only stored spike times. Do we have to modify
our code to store that variable and rerun the entire simulation?



Tip: Store synaptic events; recreate single cells as

initial conditions
+ =3 neuron dynamics
synaptic events

v -|e|% Timeseries plot -|e| %
XY  XZ Yz soma(0.5).v vs t
25
soma(0.5).v(1=67.625) = 25.82814598083496

0
-25
-50

-1000 -750 -500 -250 0 250 -75

200 400 600 800 1000
-80.632 59.046
t

67.625 >



Using spike data to recreate a variable of interest

We will need vecevent.mod. If you have NEURON, this file should be on your
computer somewhere. Alternatively, you can download it from:

http://www.neuron.yale.edu/hg/neuron/nrn/raw-file/
tip/share/examples/nrniv/netcon /vecevent.mod



Using spike data to recreate a variable of interest

import json

from neuron import h

from PyNeuronToolbox import morphology
from matplotlib import pyplot
h.load_file(’stdrun.hoc’)

num_cells = 20

# class Pyramidal as before
# read spike times

with open(’output.json’) as f:
spike_times_by_cell = json.load(f)

(continued)



Using spike data to recreate a variable of interest

def get_m(gid):
p = Pyramidal(gid)
# recreate synaptic inputs (here, only one; you may have multiple)
precell = (gid - 1) % num_cells
vs = h.VecStim()
spike_vec = h.Vector(spike_times_by_cell[str(precell)])
vs.play(spike_vec)
syn = h.ExpSyn(p.dend[0] (0.5))
nc = h.NetCon(vs, syn)
nc.delay = 1
nc.weight[0] = 1
# setup recording
t, m = h.Vector(), h.Vector() 10
t.record(h._ref_t)
m.record(p.soma[0] (0.5)._ref_m_hh)
# do run 08
pc = h.ParallelContext ()
pc.set_maxstep(10)
h.v_init = -69
h.stdinit ()
pc.psolve(100) 04
return t, m

0.6

t, m = get_m(5) 02

pyplot.plot(t, m) -

pyplot.show() 00




For more information

For more background and a step-by-step guide to creating a network model, see
the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython /index.html

We are in the process of translating the NEURON help documentation from HOC
to Python. The partly translated documentation is available online at:

http://neurosimlab.org/ramcd/pyhelp/



	Overview
	Getting started
	Building a model (part 1)
	Aside: version control
	Building a model (part 2)
	More information
	More information


