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Why use parallel computation?

Three reasons:
@ Get the results for a simulation in less real time.
@ Run a larger simulation in the same amount of time.

@ Run models needing more memory than is available on one machine.

What are the downsides?
Parallel models introduce:

@ Greater programming complexity.
@ New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.




Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors
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Cells can communicate by
@ logical spike events with significant axonal, synaptic delay.

@ postsynaptic conductance depending continuously on presynaptic voltage.

@ gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines. |

| A

A parallel model can fall in 1, 2, or 3 of these classes.



Some parallel philosophy

@ A network of neurons is composed of many individual neurons of potentially
many cell types. As much as possible, design and debug each cell type
separately before building the network.

@ A simulation should give the same results regardless of the number of
processors used to run it.

@ When possible, parameterize your network so you can run a small test first.
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Synaptic connections with one processor
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nc = h.NetCon(PreSyn, PostSyn, sec=presyn_section)
nc.delay =1

Delay is measured in ms.
We can also set: nc.weight and nc.threshold[].

PreSyn is a pointer, e.g. soma(0.5) . _ref_v; PostSyn is a point process e.g. an instance of h.ExpSyn.



If cells in different processes, a different approach is needed

PreCell PostCell

PostSyn

g CPU 2 CPU 4

The ParallelContext object facilitates building parallel models.

pc = h.ParallelContext()



Every spike source must have a GID.

Processor 1 Processor 2

Processor 3 Processor 4

Note: to ensure the model produces identical results regardless of the number of
processors, also use GIDs to selecting random streams (e.g. Random123).



Building synapses

PreCell PostCell




Configuring the presynaptic connection site

PreCell

Create cell only where the gid exists: Associate gid with spike source:
if pc.gid_exists(7): nc = h.NetCon(PreSyn, None, sec=presec)
PreCell = Cell() pc.cell(7, nc)

PreSyn here is a pointer, e.g. PreCell.soma(0.5)..ref.v



Configuring the postsynaptic connection site

PostCell

Create NetCon on node where target exists:

nc = pc.gid_connect (7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.



Spike exchange method
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Spike exchange method
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Spike exchange method
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Spike exchange method
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Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)
h.stdinit ()
pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set_maxstep. In general, larger
intervals are better because they reduce communication overhead.

spikes here are delivered here
min delay

exchange exchange

pc.set_maxstep must be called on each node; it uses MPT_Allreduce to
determine the minimum delay.



Simple load-balancing strategy: round-robin.

Processor 1 Processor 2

Processor 3 Processor 4



Simple load-balancing strategy: round-robin.

CPUO

pc.id 0
pc.nhost 5
ncell 14

gid
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CPU 3

pc.id 3
pc.nhost 5
ncell 14

gid
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An efficient way to distribute, especially if all cells similar:
for gid in range(int(pc.id()), ncell, int(pc.nhost())):
pc.set_gid2node(gid, pc.id())

CPU 4

pc.id 4
pc.nhost 5
ncell 14

gid

4

9

(Note: the body is executed at most [ncell/nhost]| times, not ncell.)



Advanced load-balancing: balance work not number of cells

Strategy:
@ Distribute cells round-robin to all processors, instantiate them.
@ Compute an estimate of the computational complexity:

def complexity(self):
h.load_file('loadbal.hoc')
1b = h.LoadBalance()
return lb.cell_complexity(sec=self.all[0])

Destroy the cells, send the gid-complexity data to node 0.

(On node 0): distribute gids such that the next gid goes to the node with the
least amount of complexity.

Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use Ib.ExperimentalMechComplex and Ib.read_complex.



Performance: MPI scaling
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Performance: Spike exchange strategies
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Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.



Tip: Store synaptic events; recreate single cells as

initial conditions
+ =3 neuron dynamics
synaptic events
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Use NetCon.record method to store spike times. Save them as e.g. JSON. Play
them back into a single cell simulation using VecStim.

VecStim is defined in vecevent.mod which is available at https://github.com/nrnhines/nrn/blob/master /share/examples/nrniv/netcon /vecevent.mod




Multisplit



Improve load balancing with multisplit
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Using multisplit (MPI)

For process-based multisplit (with MPI), use pc.multisplit to declare split
nodes:

pc.multisplit(x, subtreeid, sec=sec)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:
@ Each subtree can have at most two split nodes.

@ Does not support variable step, linear mechanisms, extracellular, or
reaction-diffusion.

@ h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces
than processes.

For an example, see the file multisplit_distrib.py at http://modeldb.yale.edu/151681






Continuous voltage exchange

si(x1l).v

gl.vgap
HalfGap.mod
NEURON  { ASSIGNED {
POINT PROCESS HalfGap v (millivolt)
ELECTRODE CURRENT i vgap (millivolt)
RANGE r, i, vgap i (nanoamp)

} }
PARAMETER { r = 1le9 (megohm) } CURRENT { i

(vgap - v) / r }



pc.source_var to declare source sgid

pc.source_var(s1(x1)._ref v, 1)

si(x1).v «> sglid

9 e > $2(x2).v

pc.source_var(s2(x2)._ref_ v, 2)



pc.target var to declare target connection

pc.source_var(s1(x1)._ref v, 1)
sgid

s1(x1).v «—> 1 Nfrget_var(gz._ref_vgap, 1)
g2.vgap

gl.vgap
pc.target_var(gl._ref_vgap, 2) 592“j <> s2(x2).v

pc.source_var(s2(x2)._ref_ v, 2)



Performance: Traub model
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Performance: Traub model with multisplit
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