
Scripting NEURON

Robert A. McDougal

Yale School of Medicine

10 November 2017

What is a script?

A script is a file with computer-readable instructions for performing a task.

In NEURON, scripts can: set-up a model, define and perform an experimental
protocol, record data, . . .

Why write scripts for NEURON?

Automation ensures consistency and reduces manual effort.

Facilitates comparing the suitability of different models.

Facilitates repeated experiments on the same model with different parameters
(e.g. drug dosages).

Facilitates recollecting data after change in experimental protocol.

Provides a complete, reproducible version of the experimental protocol.

Documentation

neuron.yale.edu

Use the “Switch to HOC” link in the upper-right corner of every page if you need documentation for HOC, NEURON’s original programming language.
HOC may be used in combination with Python: use h.load file to load a HOC library; the functions and classes are then available with an h. prefix.

Introduction to Python

Displaying results

The print command is used to display non-graphical results.

It can display fixed text:
print ('Hello everyone.') Hello everyone.

or the results of a calculation:
print (5 * (3 + 2)) 25

Storing results

Give values a name to be able to use them later.

a = max([1.2, 5.2, 1.7, 3.6])

print (a) 5.2

In Python 2.x, print is a keyword and the parentheses are unnecessary. Using the parentheses allows your code to work with both Python 2.x and 3.x.

Don’t repeat yourself

Lists and for loops

To do the same thing to several items, put the items in a list and use a for loop:

numbers = [1, 3, 5, 7, 9]

for number in numbers:

print (number * number) 1 9 25 49 81

Items can be accessed directly using the [] notation; e.g. n = number[2]

To check if an item is in a list, use in:

print (4 in [3, 1, 4, 1, 5, 9]) True

print (7 in [3, 1, 4, 1, 5, 9]) False

Dictionaries
If there is no natural order, specify your own keys using a dictionary.

data = {'soma': 42, 'dend': 14, 'axon': 'blue'}
print (data['dend']) 14

Don’t repeat yourself

Functions
If there is a particularly complicated calculation that is used once or a simple one
used at least twice, give it a name via def and refer to it by the name. Return the
result of the calculation with the return keyword.

def area_of_cylinder(diameter, length):

return 3.14 / 4 * diameter ** 2 * length

area1 = area_of_cylinder(2, 100)

area2 = area_of_cylinder(10, 10)

Using libraries

Libraries (“modules” in Python) provide features scripts can use.
To load a module, use import:

import math

Use dot notation to access a function from the module:
print (math.cos(math.pi / 3)) 0.5

One can also load specific items from a module.
For NEURON, we often want:

from neuron import h, gui

Other modules

Python ships with a large number of modules, and you can install more (like
NEURON). Useful ones for neuroscience include: math (basic math functions),
numpy (advanced math), matplotlib (2D graphics), mayavi (3D graphics),
pandas (analysis and databasing), . . .

Getting help

To get a list of functions, etc in a module (or class) use dir:

from neuron import h

print (dir(h))

Displays:

['APCount', 'AlphaSynapse', 'BBSaveState', 'CVode', 'DEG', 'Deck',

'E', 'Exp2Syn', 'ExpSyn', 'FARADAY', 'FInitializeHandler',

'File', 'GAMMA', 'GUIMath', 'Glyph', 'Graph', 'HBox', 'IClamp',

'Impedance', 'IntFire1', 'IntFire2', 'IntFire4', 'KSChan', ...]

To see help information for a specific function, use help:
help(math.cosh)

Python is widely used, and there are many online resources available, including:

docs.python.org – the official documentation

Stack Overflow – a general-purpose programming forum

the NEURON programmer’s reference – NEURON documentation

the NEURON forum – for NEURON-related programming questions

Basic NEURON scripting

Creating and naming sections

A section in NEURON is an unbranched stretch of e.g. dendrite.

To create a section, use h.Section and assign it to a variable:
apical = h.Section(name='apical')

A section can have multiple references to it. If you set a = apical, there is still
only one section. Use == to see if two variables refer to the same section:

print (a == apical) True

To access the name, use .name():
print (apical.name()) apical

Also available: a cell attribute for grouping sections by cell.

In recent versions of NEURON, named Sections will print with their name; e.g. it suffices to say print (apical).

Making NEURON GUI compatible sections

The NEURON GUI cannot read the names of sections created in Python, which
imposes certain limitations to the mouse-based interface.

One work-around is to use the following function which creates a section in HOC
and returns a Python Section object:

def Section(name):

h('create ' + name)

return getattr(h, name)

To make multi-cell simulations fully manipulatable through the GUI, define each
cell inside of a HOC Template and wrap that with a Python class.

Controlling the GUI from the Python prompt has no such limitations. All graphical functions may be accessed through the command line.

Connecting sections

To reconstruct a neuron’s full branching structure, individual sections must be
connected using .connect:

dend2.connect(dend1(1))

Each section is oriented and has a 0- and a 1-end. In NEURON, traditionally the
0-end of a section is attached to the 1-end of a section closer to the soma. In the
example above, dend2’s 0-end is attached to dend1’s 1-end.

dend1

dend2

0 1

0 1

To print the topology of cells in the model, use h.topology(). The results will
be clearer if the sections were assigned names.

h.topology()

If no position is specified, then the 0-end will be connected to the 1-end as in the example.

Example

Python script: Output:

from neuron import h

define sections
soma = h.Section(name='soma')
papic = h.Section(name='proxApical')
apic1 = h.Section(name='apic1')
apic2 = h.Section(name='apic2')
pb = h.Section(name='proxBasal')
db1 = h.Section(name='distBasal1')
db2 = h.Section(name='distBasal2')

connect them
papic.connect(soma)
pb.connect(soma(0))
apic1.connect(papic)
apic2.connect(papic)
db1.connect(pb)
db2.connect(pb)

list topology
h.topology()

|-| soma(0-1)

‘| proxApical(0-1)

‘| apic1(0-1)

‘| apic2(0-1)

‘| proxBasal(0-1)

‘| distBasal1(0-1)

‘| distBasal2(0-1)

Morphology:

proxBasal soma proxApical apic1

apic2

distBasal1

distBasal2

Length, diameter, and position

Set a section’s length (in µm) with .L and diameter (in µm) with .diam:
sec.L = 20

sec.diam = 2

Note: Diameter need not be constant; it can be set per segment.

To specify the (x , y , z ; d) coordinates that a section passes through, use e.g.
h.pt3dadd(x, y, z, d, sec=section). The section sec has sec.n3d() 3D
points; their ith x-coordinate is sec.x3d(i). The methods .y3d, .z3d, and
.diam3d work similarly.

Warning: the default diameter is based on a squid giant axon and is not
appropriate for modeling mammalian cells. Likewise, the temperature
(h.celsius) is by default 6.3 degrees (appropriate for squid, but not for
mammals).

Tip: Define a cell inside a class

Consider the code

class Pyramidal:

def __init__(self):

self.soma = h.Section(name='soma', cell=self)

The init method is run whenever a new Pyramidal cell is created, e.g. via

pyr1 = Pyramidal()

The soma can be accessed using dot notation:

print(pyr1.soma.L)

By defining a cell in a class, once we’re happy with it, we can create
multiple copies of the cell in a single line of code.

pyr2 = Pyramidal()

or even

pyrs = [Pyramidal() for i in range(1000)]

Viewing the morphology with h.PlotShape

from neuron import h, gui

class Cell:
def __init__(self):

main = h.Section(name='main', cell=self)
dend1 = h.Section(name='dend1', cell=self)
dend2 = h.Section(name='dend2', cell=self)

dend1.connect(main)
dend2.connect(main)

main.diam = 10
dend1.diam = 2
dend2.diam = 2

Important: store the sections
self.main = main; self.dend1 = dend1
self.dend2 = dend2

my_cell = Cell()

ps = h.PlotShape()
use 1 instead of 0 to hide diams
ps.show(0)

Note: PlotShape can also be used to see the distribution of a parameter or
variable. To save the PlotShape ps use ps.printfile('filename.eps').

Viewing voltage, sodium, etc

Suppose we make the voltage ('v')
nonuniform, which we can do via:

my_cell.main.v = 50
my_cell.dend1.v = 0
my_cell.dend2.v = -65

We can create a PlotShape that
color-codes the sections by voltage:

ps = h.PlotShape()
ps.variable('v')
ps.scale(-80, 80)
ps.exec_menu('Shape Plot')
ps.show(0)

After increasing the spatial resolution:
for sec in h.allsec(): sec.nseg = 101

We can plot the voltage as a function of
distance from main(0) to dend2(1):

rvp = h.RangeVarPlot('v')
rvp.begin(0, sec=my_cell.main)
rvp.end(1, sec=my_cell.main)
g = h.Graph()
g.addobject(rvp)
g.exec_menu('View = plot')

Sodium concentration could be plotted with 'nai' instead of 'v', etc.

Aside: Jupyter

Aside: Jupyter

Loading morphology from an swc file

To create pyr, a Pyramidal cell with morphology from the file c91662.swc:

from neuron import h, gui

h.load_file('import3d.hoc')

class Pyramidal:

def __init__(self):

self.load_morphology()

do discretization, ion channels, etc here

def load_morphology(self):

cell = h.Import3d_SWC_read()

cell.input('c91662.swc')

i3d = h.Import3d_GUI(cell, 0)

i3d.instantiate(self)

pyr = Pyramidal()

pyr has lists of Sections: pyr.apic, .axon, .soma, and .all. Each Section has
the appropriate .name() and .cell().

Only do this in code after you’ve already examined the cell with the Import3D GUI tool and fixed any issues in the SWC file.

Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?

Working with multiple cells

To can create a method to reposition a cell and call it from init :

class Pyramidal:
def _shift(self, x, y, z):

soma = self.soma[0]
n = soma.n3d()
xs = [soma.x3d(i) for i in range(n)]
ys = [soma.y3d(i) for i in range(n)]
zs = [soma.z3d(i) for i in range(n)]
ds = [soma.diam3d(i) for i in range(n)]
for i, (a, b, c, d) in enumerate(zip(xs, ys, zs, ds)):

h.pt3dchange(i, a + x, b + y, c + z, d, sec=soma)

def __init__(self, gid, x, y, z):
self._gid = gid
self.load_morphology()
self._shift(x, y, z)

def load_morphology(self):
cell = h.Import3d_SWC_read()
cell.input(’c91662.swc’)
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

Now if we create ten, while specifying offsets,

mypyrs = [Pyramidal(i, i * 100, 0, 0) for i in range(10)]

The PlotShape will show all the cells separately:

Does position matter?

Sometimes.

Position matters with:

Connections based on proximity of axon to dendrite.

Connections based on cell-to-cell proximity.

Extracellular diffusion.

Communicating about your model to other humans.

Distributed mechanisms
Use .insert to insert a distributed mechanism into a section. e.g.

axon.insert('hh')

Point processes

To insert a point process, specify the segment when creating it, and save the
return value. e.g.

pp = h.IClamp(soma(0.5))

To find the segment containing a point process pp, use
seg = pp.get segment()

The section is then seg.sec and the normalized position is seg.x.

The point process is removed when no variables refer to it.

Use List to find out how many point processes of a given type have been defined:

all_iclamp = h.List('IClamp')
print ('Number of IClamps:')
print (all_iclamp.count())

Setting and reading parameters

In NEURON, each section has normalized coordinates from 0 to 1.
To read the value of a parameter defined by a range variable at a given normalized
position use: section(x).MECHANISM.VARNAME
e.g.

gkbar = apical(0.2).hh.gkbar

Setting variables works the same way:

apical(0.2).hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken
into (each potentially with their own value for range variables), use
section.nseg:

apical.nseg = 11

To specify the temperature, use h.celsius:

h.celsius = 37

Setting and reading parameters

Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

for segment in apical:

segment.hh.gkbar = 0.037

The above is equivalent to apical.gkbar hh = 0.037, however the first version
allows setting values nonuniformly.

A list comprehension can be used to create a Python list of all the values of a
given property in a segment:

apical_gkbars = [segment.hh.gkbar for segment in apical]

Note: looping over a Section only returns true Segments. If you want to include
the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead.

HOC’s for (x,0) and for (x) are equivalent to looping over a section and looping over allseg, respectively.

Running simulations

Basics
To initialize a simulation to -65 mV:

h.finitialize(-65)

To run a simulation until t = 50 ms:

h.continuerun(50)

Additional h.continuerun calls will continue from the last time.

Ways to improve accuracy

Reduce time steps via, e.g. h.dt = 0.01

Enable variable step (allows error control): h.CVode().active(True)

Increase the discretization resolution: sec.nseg = 11

To increase nseg for all sections:
for sec in h.allsec(): sec.nseg *= 3

Recording data

To see how a variable changes over time, create a Vector to store the time course:
data = h.Vector()

and do a .record with the last part of the name prefixed by ref .

e.g. to record soma(0.3).ina, use
data.record(soma(0.3). ref ina)

Tips

Be sure to also record h. ref t to know the corresponding times.

.record must be called before h.finitialize().

If v is a Vector, then v.as numpy() provides the equivalent numpy array; that is, changing one changes the other.

Example: Hodgkin-Huxley

from neuron import h, gui
from matplotlib import pyplot

morphology and dynamics
soma = h.Section(name='soma')
soma.insert('hh')

current clamp
i = h.IClamp(soma(0.5))
i.delay = 2 # ms
i.dur = 0.5 # ms
i.amp = 50

recording
t = h.Vector()
v = h.Vector()
t.record(h._ref_t)
v.record(soma(0.5)._ref_v)

simulation
h.finitialize(-65)
h.continuerun(49.5)

plotting
pyplot.plot(t, v)
pyplot.show()

0 10 20 30 40 50
80

60

40

20

0

20

40

A spike occurs whenever Vm crosses some threshold (e.g. 0 mV).
Python can easily find all spike times. Only changes from the previous example
are highlighted.

from neuron import h, gui
from matplotlib import pyplot
soma = h.Section(name='soma')
soma.insert('hh')
current clamps
iclamps = []
for t in [2, 13, 27, 40]:

i = h.IClamp(soma(0.5))
i.delay = t # ms
i.dur = 0.5 # ms
i.amp = 50
iclamps.append(i)

recording
t = h.Vector()
v = h.Vector()
t.record(h._ref_t)
v.record(soma(0.5)._ref_v)
simulation
h.finitialize(-65)
h.continuerun(49.5)
compute spike times
st = [t[j] for j in range(len(v) - 1)

if v[j] <= 0 and v[j + 1] > 0]
print ('spike times:')
print (st)
plotting
pyplot.plot(t, v)
pyplot.show()

0 10 20 30 40 50
80

60

40

20

0

20

40

60

The console displays:
spike times:
[3.1750000000000114, 28.149999999998936,
41.6250000000009]

That is, the cell spiked at: 3.175
ms, 28.150 ms, and 41.625 ms.

Interspike intervals (ISIs) are the delays between spikes; that is, they are the
differences between consecutive spike times.

To display ISIs for the previous example, we add the lines:

isis = [next - last for next, last in zip(st[1:], st[:-1])]

print ('ISIs:'); print (isis)

The result:

[24.974999999998925, 13.475000000001966]

That is, the delays between spikes were 24.975 ms and 13.475 ms.

Networks of neurons

Suppose we have the simple neuron model:
from neuron import h, gui

class Cell:
def __init__(self):

self.soma = h.Section(name='soma', cell=self)
self.soma.insert('hh')

and two cells:
neuron1 = Cell()
neuron2 = Cell()

one of which is stimulated by a current clamp:
ic = h.IClamp(neuron1.soma(0.5))
ic.amp = 50
ic.delay = 2 # ms
ic.dur = 0.5 # ms

A synapse from that cell to the other may cause the second cell to fire when the
first cell is stimulated. In NEURON, the post-synaptic side of the synapse is a
point process; presynaptic threshold detection is done with an h.NetCon.

Networks of neurons

Setup the post-synaptic side:
postsyn = h.ExpSyn(neuron2.soma(0.5))
postsyn.e = 0 # reversal potential

Setup the presynaptic side, transmission delay, and synaptic weight:
syn = h.NetCon(neuron1.soma(0.5)._ref_v, postsyn, sec=neuron1.soma)
syn.delay = 1
syn.weight[0] = 5

Then we can setup recording, run, and plot as usual:
t, v1, v2 = h.Vector(), h.Vector(), h.Vector()
t.record(h._ref_t)
v1.record(neuron1.soma(0.5)._ref_v)
v2.record(neuron2.soma(0.5)._ref_v)

h.finitialize(-65)
h.continuerun(10)

from matplotlib import pyplot
pyplot.plot(t, v1, t, v2)
pyplot.xlim((0, 10))
pyplot.show()

0 2 4 6 8 10
80

60

40

20

0

20

40

60

h.ExpSyn is one of several general synapse types distributed with NEURON; additional ones may be specified in NMODL or downloaded from
ModelDB.

The use of h.NetCon must be modified slightly to support parallel simulation; this is discussed in a different presentation.

Storing data to CSV to share with other tools

The CSV format is widely supported by mathematics, statistics, and spreadsheet
programs and offers an easy way to pass data back-and-forth between them and
NEURON.

In Python, we can use the csv module to read and write csv files.

Adding the following code after the continuerun in the example will create a file
data.csv containing the course data.

import csv

with open('data.csv', 'wb') as f:

csv.writer(f).writerows(zip(t, v))

Each row in the file corresponds to one time point. The first column contains t
values; the second contains v values. Additional columns can be stored by adding
them after the t, v.

For more complicated data storage needs, consider the pandas or h5py modules.
Unlike csv, these must be installed separately.

Version control

Version control: git

Why use version control?

Protects against losing working code: if something used to work but no
longer does, you can test previous versions to identify what change caused
the error.

Provides a record of script history: authorship, changes, . . .

Promotes collaboration: provides tools to combine changes made
independently on different copies of the code.

Version control: git basics

Setup

git init

Declare files to be tracked

git add FILENAME

Commit a version (so can return to it later)

git commit -a

Return to the version of FILENAME from 2 commits ago

git checkout HEAD~2 FILENAME

Version control: git

View list of changes

git log

Remove a file from tracking

git rm FILENAME

Rename a tracked file

git mv OLDNAME NEWNAME

Version control: git and remote servers

git (and mercurial) is a distributed version control system, designed to allow you
to collaborate with others. You can use your own server or a public one like github
or bitbucket.

Download from a server

git clone http://URL.git

Get changes from server and merge with local changes

git pull

Sync local, committed changes to the server

git push

Version control: syncing data with code

One simple way to ensure you always know what version of the code generated
your data is to include the git hash in the filename. The following function can
help:

def git_hash():

import subprocess

suffix = ''
if subprocess.check_output(['git', 'diff']):

suffix = '+'
return '%s%s' % (subprocess.check_output([

'git', 'log', '-1', '--pretty=format:%h']),
suffix)

Then, for example, save matplotlib graphics with:
pyplot.savefig('filename ' + git hash() + '.pdf')

GUI development

Making your own graphical interface

To ensure your GUI responds
to user input, be sure to:
from neuron import gui

Place basic widgets (text,
buttons, checkboxes, . . .) in
an h.xpanel.

from neuron import h, gui

h.xpanel('Example 1')
h.xlabel('Hello class')
h.xbutton('Click me')
h.xpanel()

Button actions

To perform an action when a
button is pressed, write it as a
function, and then pass the
function to h.xbutton.

from neuron import h, gui

def say_hello():

print 'hello!'

h.xpanel('Example 2')
h.xbutton('Click me',

say_hello)

h.xpanel()

Pressing the button displays:

hello!

Pressing the button twice:

hello!

hello!

Number fields and classes

Place your GUI commands in a class to allow independent reuse.

from neuron import h, gui

class Demo:

def __init__(self):

self.value = 7.18

h.xpanel('Demo')
h.xvalue('Choose a number:',

(self, 'value'))
h.xbutton('Press me',

self.print_value)

h.xpanel()

def print_value(self):

print ('You chose:')
print (self.value)

make two demos

d1 = Demo()

d2 = Demo()

Clicking “Press me” on the left
window and then on the right
window displays:

You chose:

3.67

You chose:

7.11

Layout: HBox and VBox

Combine windows horizontally with HBox and vertically with VBox.

from neuron import h, gui

hbox = h.HBox()

hbox.intercept(1)

h.xpanel('Example 1')
h.xlabel('Hello class')
h.xbutton('Click me')
h.xpanel()

h.xpanel('Example 3')
h.xbutton('Say hello')
h.xpanel()

h.xpanel()

hbox.intercept(0)

hbox.map()

Note: HBox and VBox can contain: H/VBox, Deck, xpanel, Graph, . . .

Layout: HBox and VBox

Complicated layouts can be constructed using nested VBox and HBox objects:

For more information

For more background and a step-by-step guide to creating a network model, see
the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython/index.html

The NEURON Python programmer’s reference is available at:

http://neuron.yale.edu/neuron/static/py doc/index.html

Ask questions on the NEURON forum:

http://neuron.yale.edu/phpbb

	Introduction to Python
	Python basics: printing and variables
	Python basics: lists, dictionaries, functions
	Modules
	Getting help

	Basic NEURON scripting
	Sections
	Morphology
	Ion channels
	Setting and reading parameters
	Simulation
	Recording data
	Example: Hodgkin-Huxley
	Analyzing simulation results

	Version control
	Version Control

	GUI development
	More information
	More information

