Building, Running, and Visualizing

Parallel NEURON Models

Robert A. McDougal
Yale School of Medicine

10 November 2017

Why use parallel computation?

Three reasons:
@ Get the results for a simulation in less real time.
@ Run a larger simulation in the same amount of time.

@ Run models needing more memory than is available on one machine.

What are the downsides?
Parallel models introduce:

@ Greater programming complexity.
@ New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.

Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors

| \

Cells can communicate by
@ logical spike events with significant axonal, synaptic delay.

@ postsynaptic conductance depending continuously on presynaptic voltage.

@ gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines. |

| A

A parallel model can fall in 1, 2, or 3 of these classes.

Some parallel philosophy

@ A network of neurons is composed of many individual neurons of potentially
many cell types. As much as possible, design and debug each cell type
separately before building the network.

@ A simulation should give the same results regardless of the number of
processors used to run it.

@ When possible, parameterize your network so you can run a small test first.

vy

Synaptic connections with one processor

PreCell PostCell

PostSyn
v

N
O\
7,
ge“

nc = h.NetCon(PreSyn, PostSyn, sec=presyn_section)
nc.delay =1

Delay is measured in ms.
We can also set: nc.weight and nc.threshold[].

PreSyn is a pointer, e.g. soma(0.5) . _ref_v; PostSyn is a point process e.g. an instance of h.ExpSyn.

If cells in different processes, a different approach is needed

PreCell PostCell

PostSyn

g CPU 2 CPU 4

The ParallelContext object facilitates building parallel models.

pc = h.ParallelContext()

Every spike source must have a GID.

Processor 1 Processor 2

Processor 3 Processor 4

Note: to ensure the model produces identical results regardless of the number of
processors, also use GIDs to selecting random streams (e.g. Random123).

Building synapses

PreCell PostCell

Configuring the presynaptic connection site

PreCell

Create cell only where the gid exists: Associate gid with spike source:
if pc.gid_exists(7): nc = h.NetCon(PreSyn, None, sec=presec)
PreCell = Cell() pc.cell(7, nc)

PreSyn here is a pointer, e.g. PreCell.soma(0.5)..ref.v

Configuring the postsynaptic connection site

PostCell

Create NetCon on node where target exists:

nc = pc.gid_connect (7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.

Spike exchange method

PreCell PostCell

Spike exchange method

PreCell

PostCell

PostSyn

Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1

gid 7 ~|gid 7

t _2.gys|MPLAllGather 51y 5875
gid —— Olgid ——
t t

cpu 3

Spike exchange method

PreCell PostCell

n 1 n 1

gid 7 ~|gid 7
t 2.875 3t 2875
gid —— Olgid ——
t — t

t 0

Y 2
1 | — 1 o
0 2 4 6

Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)
h.stdinit ()
pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set_maxstep. In general, larger
intervals are better because they reduce communication overhead.

spikes here are delivered here
min delay

exchange exchange

pc.set_maxstep must be called on each node; it uses MPT_Allreduce to
determine the minimum delay.

Simple load-balancing strategy: round-robin.

Processor 1 Processor 2

Processor 3 Processor 4

Simple load-balancing strategy: round-robin.

CPUO

pc.id 0
pc.nhost 5
ncell 14

gid

0

5

10

CPU 3

pc.id 3
pc.nhost 5
ncell 14

gid

3

8

13

An efficient way to distribute, especially if all cells similar:
for gid in range(int(pc.id()), ncell, int(pc.nhost())):
pc.set_gid2node(gid, pc.id())

CPU 4

pc.id 4
pc.nhost 5
ncell 14

gid

4

9

(Note: the body is executed at most [ncell/nhost]| times, not ncell.)

Advanced load-balancing: balance work not number of cells

Strategy:
@ Distribute cells round-robin to all processors, instantiate them.
@ Compute an estimate of the computational complexity:

def complexity(self):
h.load_file('loadbal.hoc')
1b = h.LoadBalance()
return lb.cell_complexity(sec=self.all[0])

Destroy the cells, send the gid-complexity data to node 0.

(On node 0): distribute gids such that the next gid goes to the node with the
least amount of complexity.

Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use Ib.ExperimentalMechComplex and Ib.read_complex.

Performance: MPI scaling

Santhakumar et al. (2005)

coll number

CINECA 1M Linux cluster
EPFL IBM Blue Gene

»

0 5 100 150 200 250
time (ms)

Davison et al., (2003)

500

o Mkl b -
0 100 200 300 400 500

time (ms)

8 16 32 64 128 256 512
number of processors

32 64 128 256 512
number of processors

32 64 128 256 512

8 16
number of processors.

A)

cell number

extended (160,000 cells) Bush et al (1999) model
on the EPFL IBM BlueGene

160¢10°

140¢10°

120¢10°

100x10°

g 8

10000 cells

o

160000 cells s

50 125 250 500 1000 2000 4000 8000

number of processors

Performance: Spike exchange strategies

MPI_ISend - Two Phase, Two Subinterval ArtIfICIal Splklng Net

A

A Allgather

® DCMF_Multicast - Two Phase, Two Subinterval Blue Gene/P

O Record-Replay - One Subinterval .

+ Computation Time (includes queue) Argonne National Lab

Strong Scaling
32 ~

5 2M Cells < 1/4M Cells
@ @
816 - 1k Connfcell 216 = N 10k Conn/cell
@ @ N
£ 8 £ 8 N
€ € N
5 5
€ 4 X 4
2 2
1+ 1=
05 J 0.5 | | NE J
8 16 32 64 138 8 16 32 64 128
K processors K processors
Weak Scaling
30 30 —
o o
CD @
8 A,,__A——A*H g
o @
E2 | E2 |-
5 1k Conn/cell 5 10k Conn/cell
4 4
10 10
2M cells 32M cells 1/4M cells 4M cells
0 1 1 1 1 0 1 1 1 1 1)
8 16 32 64 128 8 16 32 64 128

K processors K processors

Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.

Tip: Store synaptic events; recreate single cells as

initial conditions
+ =3 neuron dynamics
synaptic events

v - 2% Timeseries plot =12 %
XY XZ Y-z soma(0.5).vvs t
25
soma(0.5).v(1=67.625) = 25.82814598083496

o
-25
-50

-1000-750 -500 -250 O 250 -75

200 400 600 800 1000

-80.632 59.046
t

67.625

Use NetCon.record method to store spike times. Save them as e.g. JSON. Play
them back into a single cell simulation using VecStim.

VecStim is defined in vecevent.mod which is available at https://github.com/nrnhines/nrn/blob/master /share/examples/nrniv/netcon /vecevent.mod

Multisplit

Improve load balancing with multisplit

200 —

16 Pieces \ L o
4 CPU ” 4 soomp .
100 |-
000
50 - @®
ole®® 1
0 4 8 12 16
Piece

o~ g g = :

#comp n . -
]
300 —
Time (s) 200 |-
CPU Computation Exchange]
0 13.82 0.56 Runtime(s)
1 13.35 1.03 16 pieces, 1 cpu sso L
e meom el UL
3 13.56 0.82 ' ’ R TR

Multisplit algorithm described in Hines et al 2008. DOI: 10.1007/s10827-008-0087-5

Using multisplit (MPI)

For process-based multisplit (with MPI), use pc.multisplit to declare split
nodes:

pc.multisplit(x, subtreeid, sec=sec)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:
@ Each subtree can have at most two split nodes.

@ Does not support variable step, linear mechanisms, extracellular, or
reaction-diffusion.

@ h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces
than processes.

For an example, see the file multisplit_distrib.py at http://modeldb.yale.edu/151681

Continuous voltage exchange

si(x1l).v

gl.vgap
HalfGap.mod
NEURON { ASSIGNED {
POINT PROCESS HalfGap v (millivolt)
ELECTRODE CURRENT i vgap (millivolt)
RANGE r, i, vgap i (nanoamp)

} }
PARAMETER { r = 1le9 (megohm) } CURRENT { i

(vgap - v) / r }

pc.source_var to declare source sgid

pc.source_var(s1(x1)._ref v, 1)

si(x1).v «> sglid

9 e > $2(x2).v

pc.source_var(s2(x2)._ref_ v, 2)

pc.target var to declare target connection

pc.source_var(s1(x1)._ref v, 1)
sgid

s1(x1).v «—> 1 Nfrget_var(gz._ref_vgap, 1)
g2.vgap

gl.vgap
pc.target_var(gl._ref_vgap, 2) 592“j <> s2(x2).v

pc.source_var(s2(x2)._ref_ v, 2)

Performance: Traub model

Pittsburgh Supercomputing Center
Bigben Cray XT3

2068 2.4 GHz Opteron Processors

1024 —
0 50 100 150 200
Traub et. al. (2005) J. Neurophysiol 93: 2194
256 |- Assingle column thalamocortical network model
exhibiting gamma oscillations, sleep spindles and
epileptogenic bursts.
. =~
® Runtime
64 T~ lIdealruntime
©) = Spike exchange time
S
\l Mean, max, min Computation time -~
16 |— . . . 8516
+ Mean, max, min variable transfer time woss
3560 cells 14 types
41— 3500 gap junctions
5,596,810 equations
73,465 spikes
1,122,520 connections
19,844,187 delivered
1L

L | | | | J
25 50 100 200 400 800

#CPU

Performance: Traub model with multisplit

1024 ~ 80
Traub
60
B #Cells
356 Cells ‘“’
256 \ .
S I 3000 3000 4000 5000
Complexity
64 |-
- e Runtime 4025681pieces
o Computation time :
N 18.7
16 - Whole cell balance N 132
Multisplit, No Gap Junctions ? '
— m Multisplit, With Gap Junctions
4 L 1 | | |

| | J
32 128 512 2048

CPUs

	Overview
	Getting started
	Multisplit
	Gap Junctions

