
Building, Running, and Visualizing
Parallel NEURON Models

Robert A. McDougal

Yale School of Medicine

10 November 2017

Why use parallel computation?

Three reasons:

Get the results for a simulation in less real time.

Run a larger simulation in the same amount of time.

Run models needing more memory than is available on one machine.

What are the downsides?
Parallel models introduce:

Greater programming complexity.

New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.

Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors

Cells can communicate by

logical spike events with significant axonal, synaptic delay.

postsynaptic conductance depending continuously on presynaptic voltage.

gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines.

A parallel model can fall in 1, 2, or 3 of these classes.

Some parallel philosophy

A network of neurons is composed of many individual neurons of potentially
many cell types. As much as possible, design and debug each cell type
separately before building the network.

A simulation should give the same results regardless of the number of
processors used to run it.

When possible, parameterize your network so you can run a small test first.

Synaptic connections with one processor

PreCell PostCell

PostSyn

PreSyn

Ne
tCo
n

nc = h.NetCon(PreSyn, PostSyn, sec=presyn section)

nc.delay = 1

Delay is measured in ms.

We can also set: nc.weight and nc.threshold[].

PreSyn is a pointer, e.g. soma(0.5). ref v; PostSyn is a point process e.g. an instance of h.ExpSyn.

If cells in different processes, a different approach is needed

PreCell PostCell

PostSyn

PreSyn

NetC
on

CPU 2 CPU 4

?
?

NetC
on

The ParallelContext object facilitates building parallel models.

pc = h.ParallelContext()

Every spike source must have a GID.

1 5 2 6

3 7 4

Processor 1 Processor 2

Processor 3 Processor 4
Note: to ensure the model produces identical results regardless of the number of
processors, also use GIDs to selecting random streams (e.g. Random123).

Building synapses

PreCell PostCell

PostSyn

PreSyn

gid = 9gid = 7

Configuring the presynaptic connection site

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9

Create cell only where the gid exists:
if pc.gid_exists(7):

PreCell = Cell()

Associate gid with spike source:
nc = h.NetCon(PreSyn, None, sec=presec)
pc.cell(7, nc)

PreSyn here is a pointer, e.g. PreCell.soma(0.5). ref v

Configuring the postsynaptic connection site

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9
pc.g

id_con
nect

7

Create NetCon on node where target exists:

nc = pc.gid connect(7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.

Spike exchange method

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9

0 1 2 3 4 5

−80

−40

0

40

2.875 (ms)

0 2 4 6

pc.g
id_con

nect

7

Spike exchange method

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9

n
gid
t
gid
t

1
7
2.875

t

pc.g
id_con

nect

7

0 2 4 6

Spike exchange method

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9

n
gid
t
gid
t

1
7
2.875

t

n
gid
t
gid
t

1
7
2.875

n
gid
t
gid
t

0

n 0

cp
u
 1

cp
u
 3

cp
u
 2MPI_Allgather

0 2 4 6

pc.g
id_con

nect

7

Spike exchange method

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9

n
gid
t
gid
t

1
7
2.875

t

n
gid
t
gid
t

1
7
2.875

n
gid
t
gid
t

0

n 0

cp
u
 1

cp
u
 3

cp
u
 2

0 2 4 6

7
pc.g

id_con
nect

Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)

h.stdinit()

pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set maxstep. In general, larger
intervals are better because they reduce communication overhead.

exchange exchange

min delay

spikes here are delivered here

pc.set maxstep must be called on each node; it uses MPI Allreduce to
determine the minimum delay.

Simple load-balancing strategy: round-robin.

1 5 2 6

3 7 4

Processor 1 Processor 2

Processor 3 Processor 4

Simple load-balancing strategy: round-robin.

CPU 0
pc.id 0
pc.nhost 5
ncell 14

CPU 3
pc.id 3
pc.nhost 5
ncell 14

CPU 4
pc.id 4
pc.nhost 5
ncell 14

 0
 5
10

gid
 3
 8
13

gid
 4
 9

gid

An efficient way to distribute, especially if all cells similar:

for gid in range(int(pc.id()), ncell, int(pc.nhost())):

pc.set_gid2node(gid, pc.id())

...

(Note: the body is executed at most dncell/nhoste times, not ncell.)

Advanced load-balancing: balance work not number of cells

Strategy:

Distribute cells round-robin to all processors, instantiate them.

Compute an estimate of the computational complexity:

def complexity(self):
h.load_file('loadbal.hoc')
lb = h.LoadBalance()
return lb.cell_complexity(sec=self.all[0])

Destroy the cells, send the gid-complexity data to node 0.

(On node 0): distribute gids such that the next gid goes to the node with the
least amount of complexity.

Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use lb.ExperimentalMechComplex and lb.read complex.

Performance: MPI scaling

Performance: Spike exchange strategies

Strong Scaling

Weak Scaling

8 16 32 64 128

1

2

4

8

16

32

0.5

K processors

1k Conn/cell
2M Cells

R
un

tim
e

(s
ec

)

10k Conn/cell
1/4M Cells

K processors
8 16 32 64 128

0.5

1

2

4

8

16

32

R
un

tim
e

(s
ec

)

1k Conn/cell

2M cells 32M cells

K processors
8 16 32 64 128

0

10

20

30

R
un

tim
e

(s
ec

)

10k Conn/cell

1/4M cells

K processors

4M cells

8 16 32 64 128
0

10

20

30
R

un
tim

e
(s

ec
)

Allgather

Record−Replay − One Subinterval

MPI_ISend − Two Phase, Two Subinterval

DCMF_Multicast − Two Phase, Two Subinterval

Computation Time (includes queue) Argonne National Lab
Blue Gene/P
Artificial Spiking Net

Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.

Tip: Store synaptic events; recreate single cells as needed

initial conditions

+

synaptic events

neuron dynamics

Use NetCon.record method to store spike times. Save them as e.g. JSON. Play
them back into a single cell simulation using VecStim.

VecStim is defined in vecevent.mod which is available at https://github.com/nrnhines/nrn/blob/master/share/examples/nrniv/netcon/vecevent.mod

Multisplit

Improve load balancing with multisplit

0 4 8 12 16
0

50

100

150

200

0 1 2 3 4

100

200

300

400
401 395 400 404

16 Pieces
4 CPU

Computation
Time (s)

ExchangeCPU
0
1
2
3

wholecell, 1 cpu
16 pieces, 4 cpu

56.2
55.0

Runtime(s)

CPU

Piece

#comp

#comp

16 pieces, 1 cpu

14.4

13.82 0.56
13.35 1.03
13.47 0.90
13.56 0.82

Multisplit algorithm described in Hines et al 2008. DOI: 10.1007/s10827-008-0087-5

Using multisplit (MPI)

For process-based multisplit (with MPI), use pc.multisplit to declare split
nodes:

pc.multisplit(x, subtreeid, sec=sec)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:

Each subtree can have at most two split nodes.

Does not support variable step, linear mechanisms, extracellular, or
reaction-diffusion.

h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces
than processes.

For an example, see the file multisplit distrib.py at http://modeldb.yale.edu/151681

Gap Junctions

Continuous voltage exchange

s1(x1).v

s2(x2).v

g2 = h.HalfGap(s2(x2))
g1 = h.HalfGap(s2(x1))

g1.vgap

g2.vgap

HalfGap.mod

NEURON {
 POINT_PROCESS HalfGap
 ELECTRODE_CURRENT i
 RANGE r, i, vgap
}
PARAMETER { r = 1e9 (megohm) }

ASSIGNED {
 v (millivolt)
 vgap (millivolt)
 i (nanoamp)
}
CURRENT { i = (vgap - v) / r }

pc.source var to declare source sgid

s1(x1).v

s2(x2).v

g2 = h.HalfGap(s2(x2))
g1 = h.HalfGap(s2(x1))

g1.vgap

g2.vgap

HalfGap.mod

NEURON {
 POINT_PROCESS HalfGap
 ELECTRODE_CURRENT i
 RANGE r, i, vgap
}
PARAMETER { r = 1e9 (megohm) }

ASSIGNED {
 v (millivolt)
 vgap (millivolt)
 i (nanoamp)
}
CURRENT { i = (vgap - v) / r }

sgid
1

sgid
2

pc.source_var(s2(x2)._ref_v, 2)

pc.source_var(s1(x1)._ref_v, 1)

pc.target var to declare target connection

s1(x1).v

s2(x2).v

g2 = h.HalfGap(s2(x2))
g1 = h.HalfGap(s2(x1))

g1.vgap

g2.vgap

HalfGap.mod

NEURON {
 POINT_PROCESS HalfGap
 ELECTRODE_CURRENT i
 RANGE r, i, vgap
}
PARAMETER { r = 1e9 (megohm) }

ASSIGNED {
 v (millivolt)
 vgap (millivolt)
 i (nanoamp)
}
CURRENT { i = (vgap - v) / r }

sgid
1

sgid
2

pc.source_var(s2(x2)._ref_v, 2)

pc.source_var(s1(x1)._ref_v, 1)

pc.target_var(g2._ref_vgap, 1)

pc.target_var(g1._ref_vgap, 2)

Performance: Traub model

Pittsburgh Supercomputing Center

2068 2.4 GHz Opteron Processors

Bigben Cray XT3

25 50 100 200 400 800

1

4

16

64

256

1024

#CPU

(s)

5954

8516

Run time

Spike exchange time

Ideal run time

Mean, max, min Computation time

Mean, max, min variable transfer time

0 50 100 150 200
0

70

140

210

280

350

Traub et. al. (2005) J. Neurophysiol 93: 2194
A single column thalamocortical network model
exhibiting gamma oscillations, sleep spindles and
epileptogenic bursts.

3560 cells 14 types
3500 gap junctions
5,596,810 equations
73,465 spikes
1,122,520 connections
19,844,187 delivered

Performance: Traub model with multisplit

2000 3000 4000 5000
0

20

40

60

80

#Cells

Traub

Complexity

32 128 512 2048
CPUs

1024

256

64

16

4

s

13.2
18.7
26.1

Runtime
Computation time
Whole cell balance
Multisplit, No Gap Junctions
Multisplit, With Gap Junctions

356 Cells

4058 pieces

	Overview
	Getting started
	Multisplit
	Gap Junctions

