
HOC
for reading knowledge

Robert A. McDougal

Yale School of Medicine

10 August 2018

HOC in History

HOC was introduced in Kernighan and Pike (1984) to demonstrate using
Yacc.

HOC = Higher Order Calculator

oc = object-oriented extension

HOC was NEURON’s original programming language.

Hundreds of NEURON models in HOC from before (and after) Python
support was added are available on ModelDB.

Objective: Be able to read HOC code, so that we can understand what it does
and use it from Python.

Accessing a HOC interpreter

NEURON’s HOC interpreter may be accessed by typing nrniv or double clicking
the corresponding icon:

Roberts-MBP:~ ramcdougal$ nrniv

NEURON -- VERSION 7.6.1 master (a558837) 2018-08-01

Duke, Yale, and the BlueBrain Project -- Copyright 1984-2018

See http://neuron.yale.edu/neuron/credits

oc>

To exit nrniv, press ctrl-D at the prompt or type quit()

Note: launching nrniv does not load the compiled mechanisms automatically. To
do that, launch nrngui instead.

nrn load dll can be used to load MOD file mechanisms from nrniv.

nrniv and nrngui can both take a filename parameter to run the file automatically, e.g. nrniv my file.hoc

To run an MPI simulation with nrniv, use the -mpi flag, e.g. mpiexec -n 4 nrniv -mpi my file.hoc

To learn more: Programmer’s reference pages also in HOC

To learn more: The NEURON Book and ModelDB

The NEURON Book provides a HOC introduction and all examples are in HOC:

Search ModelDB for specific terms and restrict your searches to HOC files:

finitializehandler file:*.hoc

Basic HOC syntax

Flow control

Familiar flow control statements are available in HOC:

if

if (a == b) {

print "same"

} else {

print "different"

}

for

for i = 1, 5 {

print i

} // note: both end points are included

for (i = 1; i < 1025, i *= 2) {

print i

}

Flow control

while

i = 0

while (i < 7) {

i = i + 2

print i

} // prints 2, 4, 6, 8

Grouping statements

Unlike Python which uses indentation to indicate grouping, e.g.

for i in range(10):

print(i)

HOC uses curly brackets like C++, JavaScript, etc:

for(i=0; i<10; i+=1) {

print i

}

It’s good style to also indent HOC code, but not everyone did. Indentation may
also be inconsistent.

In fact, HOC uses context to figure out when an instruction end, so you may run
into multiple instructions on one line:

for(i=0; i<10; i+=1) {j = i * 2 print j}

Operators

Arithmetic operators are the same in HOC and Python:

+ - * / %

Comparison operators are the same in HOC and Python:

< <= == >= >

Logical operators are not the same:

HOC Python
&& and

|| or

! not

Note that unlike Python, HOC has no explicit concepts of True or False and
uses numbers for these purposes instead, with 0 for False and non-zero for True.

oc>print 4 < 2, 2 < 4

0 1

oc>print 4 < 2 || 2 < 4

1

oc>print !(4 < 2)

1
Python understands this notation as well, but provides explicits boolean variables.

HOC → Python gotchas: fuzzy comparisons

HOC allows fuzzy comparisons.

The variable float epsilon sets the tolerance for equality.

By default, it is 10−11, which is several orders of magnitude larger than machine
epsilon. So numbers that compare equal in HOC may not compare equal in
Python.

Example:

oc>1 < 1.01

1

oc>float_epsilon = 0.1

oc>1 < 1.01

0

oc>1 == 1.01

1

The good news: as of 8/10/18, only one ModelDB model sets float epsilon.

The bad news: even when it is not explicitly set, comparison works differently in
HOC and Python.

Data types

HOC uses rigid data types.

Once a variable name has been used to store a given data type, it cannot be used
again for a different data type. Doubles (floating point numbers) may be used
without explicit declaration:

x = 2

Strings must be declared before use:

strdef s

s = "hello world" // only double quotes are allowed

Objects must also be declared:

objref pyobj

pyobj = new PythonObject()

HOC does not explicitly have a concept of integers or booleans.

Comments

HOC provides two forms of comments:

// denotes a comment that continues until end of line (same as Python’s #):

a = 2

// increment a by one

a += 1

/* with a matching */ denotes arbitrarily long, arbitrarily located comments

a = /* please don't do this but it is valid HOC */ 2

There is no direct Python equivalent, but when used as multi-line comments, this
is similar to using a multi-line string for commenting in Python:

proc solve_three_body_problem() {

/*

Analytically solves the three body problem

Implementation left as an exercise for the reader.

*/

}

func and proc

HOC has two types of callables: func and proc. These correspond to Python def

that respectively do or do not return a value.

proc say_fact() {

print "The sin of PI / 6 is ", sin(PI / 6)

}

func return_one() {return 1}

These are called with parentheses as in Python:

oc>say_fact()

The sin of PI / 6 is 0.5

oc>result = return_one()

oc>print result

1

Note: HOC has no concept of namespaces. func and proc are either at the top
level or class/template methods; compare sin above with Python’s math.sin.

func and proc: arguments

Values passed to HOC functions and procedures are accessed by 1-indexed
position and data type.

Numeric parameters are accessed via e.g. $1, $2, $3, . . .

func add_things() {

return $1 + $2

}

print add_things(4, 7) // prints 11

String parameters are accessed via e.g. $s1, $s2, $s3, . . .

proc hello() {

print "hello ", $s1

}

Object parameters are accessed via e.g. $o1, $o2, $o3, . . .

Scalar pointers are accessed via e.g. $&1, $&2, $&3, . . .

HOC → Python gotchas: variable scoping

In Python, setting a variable assigns to a local scope by default. HOC uses global
scope by default instead:

oc>a = 2

oc>proc do_a_thing() {

> oc>a = 3

> oc>print a

> oc>}

oc>do_a_thing()

3

oc>print a

3

Local variables

Local variables in HOC are explicitly declared using local in the first line of a
proc or func:

oc>print a

3

oc>proc do_another_thing() {local a

> oc>a = 4

> oc>print a

> oc>}

oc>do_another_thing()

4

oc>print a

3

HOC → Python gotchas: syntactic flexibility

HOC is relatively forgiving about syntax.

A method that takes no arguments may be called with or without using the
parentheses:

oc>objref vec

oc>vec = new Vector(100)

oc>vec.size

100

oc>vec.size()

100

In Python, however, vec.size would be the method while vec.size() would be
the value returned by the method; i.e. these are two different things.

Thus: when porting code, be careful to add parentheses after all method
invocations.

The no-parentheses option does not apply to top-level proc or func, which require the parentheses.

HOC → Python gotchas: syntactic flexibility

In HOC a single = is valid in an if statement, but it does assignment. Like
Python, == must be used for comparison:

oc>a = 1

oc>b = 2

oc>if (a = b) {

> oc>print "a equals b???"

> oc>}

a equals b???

oc>a

2

This is occasionally useful but often indicates a bug.

HOC → Python gotchas: syntactic flexibility

In HOC an array of doubles may be declared as in:

double x[10]

Values may be read and set using [] like for Python lists or numpy arrays:

x[3] = 2

The 0th item may be accessed using [0] or by omitting the indexing entirely:

oc>x

0

oc>x[0] = 4

oc>x

4

This is true even for assignment; once a variable has been declared an array it is
always an array :

oc>x=5

oc>x[0]

5

Using HOC to control NEURON

Most NEURON functions and classes available by dropping the h.

objref vec, cvode

vec = new Vector(10)

cvode = new CVode()

cvode.active(1)

On very rare occasions, some names may be slightly different. The one you are
most likely to see is an IClamp delay, which in Python is .delay but in HOC is
.del:

objref ic

soma ic = new IClamp(0.5)

ic.del = 1

The difference here is because del is a reserved keyword in Python.

Special syntax for sections

Creating sections with HOC:

create soma

create dend[10]

Dot notation may be used to access section properties:

soma.diam = soma.L = 20

But typically the currently accessed section is used instead, specified either with
the access statement; e.g.

access soma

diam = 20

L = 20

or by prefixing a statement of block of statements with the section name, e.g.

soma {

diam = 20

L = 20

}

The curly brace after the section name must occur on the same line as the section name.

Using the currently accessed section

Most of Python’s Section methods (e.g. n3d, pt3dadd) appear to HOC as
functions that depend on the currently accessed section (they cannot be accessed
using dot notation):

soma my_n3d = n3d() // in Python: my_n3d = soma.n3d()

Where Python takes a segment, HOC typically takes a normalized x-value and
finds that in the currently accessed segment. e.g.

objref rvp

rvp = new RangeVarPlot("v")

soma rvp.begin(0) // in Python: rvp.begin(soma(0))

There is no direct HOC equivalent of Python’s sec.psection(). There is a psection() that uses the currently accessed section, but that prints some
(less) data to the screen, while the Python version returns a data structure that can be examined by a script or by a human.

Connecting sections

connect is a keyword in HOC instead of a procedure or method. General form is
connect child, parent.

create soma, dend1, dend2

access soma

connect dend1(0), soma(1)

connect dend2(0), 1 // soma is implicit since current sec

Range variables

In Python, range variables are accessed through segments. There is no equivalent
of a Python segment object in HOC. Instead, the range variable comes first then
the normalized position within the section, where the section is either specified
through dot notation or taken as the currently accessed section. e.g.

print soma.v(0.5) // in Python: soma(0.5).v

soma print v(0.5)

Range variables that are part of a mechanism are accessed using the variable
name, an underscore, and then the mechanism name:

soma insert hh // in Python: soma.insert('hh')

print soma.m_hh(0.5) // in Python: soma(0.5).hh.m

Pointers

A single ampersand (&) before a variable name turns it into a pointer (this is
roughly equivalent to the ref prefix for NEURON variables in Python):

create soma

access soma

objref v_trace

v_trace = new Vector()

v_trace.record(&v(0.5)) // in Python:

// v_trace.record(soma(0.5)._ref_v)

Question: how do we know that we’re recording the soma’s membrane potential in
the HOC code?

Iterators

Iterators are like generators in Python, where the HOC iterator statement is
equivalent to the Python yield.

iterator case() {local i

for i = 2, numarg() {

$&1 = $i

iterator_statement

}

}

x=0

for case (&x, 1,2,4,7,-25) {

print x

}

Coroutines are a related concept.

Looping over sections

To loop over all sections (changing the currently accessed section), use forall,
e.g.

forall {

print secname()

}

To do the same for a SectionList, use forsec, e.g.

forsec my_section_list {

print secname()

}

Regular expressions matching the names of desired sections may be specified
instead. e.g. to find all sections whose name begins with apical, use

forsec "apical" {

print secname()

}

Sections are not objects in HOC and so they cannot be stored in a List. A special SectionLast class is used instead.

Looping over segment locations

As HOC does not have a segment object, you cannot loop over segments, but you
can loop over the normalized segment locations via, e.g.

for (x, 0) {print x}

If nseg is 5, the above would print 0.1, 0.3, 0.5, 0.7, 0.9 (on separate lines.)

Unfortunately in many HOC codes, where people meant to do the above they
instead left out the ,0 and get all of the above values and the end points (0 and
1). In Python that would be equivalent to iterating over sec.allseg(), but that
is generally not useful and risks setting the end segments twice.

Templates

Templates are like classes in Python and are used to make arbitrary many copies
of a cell.

begintemplate RE32695

public nmda, ampa, gabaa, gabab, x, y, z ...

proc init () { local i,j

x=$1 y=$2 z=$3 // locations ndend = 59

create soma, dend[ndend] ...

soma {

gabaa = new Exp2Syn (0.5) ...

Every section defined inside of a template knows what cell it belongs to; there is
no need to explicitly specify the cell in HOC.

Looping over all sections inside of a template method loops over all of that cell’s
sections.

Example template courtesy of Bill Lytton.

HOC and Python interoperability via NEURON

To load a HOC library from Python, use h.load file:

h.load_file('stdrun.hoc')

NEURON makes HOC variables, available to Python using the h. prefix as if they
were NEURON built-ins:

from neuron import h

h.finitialize(-65) # NEURON function; always works

h.continuerun(10) # defined in a HOC library;

would give an error here

h.load_file('stdrun.hoc')

h.continuerun(10) # ok here

HOC libraries for NEURON may thus be reused from Python without
changes.

Pass in a string to the h object to execute it as HOC:

>>> from neuron import h

>>> h('''

... proc hello() {

... print "hello ", $s1

... }

... ''')

1

>>> h.hello('world')

hello world

0.0

>>>

In particular, strings, numbers, and objects may be passed between Python and
HOC.

HOC is not NEURON: data types

Despite the fact that both NEURON and HOC entities may be accessed through
the h object, when it comes to numeric types, NEURON may return int, bool, or
float; HOC always returns floats, even if it’s just reporting what NEURON did :

>>> h('''

... func get_vec_size() {return $o1.size()}

... func identity() {return $1}

... ''')

1

>>> v = h.Vector([1, 2, 12])

>>> type(v.size())

<class 'int'>

>>> h.get_vec_size(v)

3.0

>>> type(v.contains(3))

<class 'bool'>

>>> h.identity(False)

0.0

Accessing Python from HOC

Python statements may be run from HOC using nrnpython, e.g.

nrnpython("import math")

Python functions may be called from HOC using a PythonObject, e.g.

objref pyobj

pyobj = new PythonObject()

print "result is ", pyobj.math.acosh(2)

// prints: result is 1.3169579

	Basic HOC syntax
	Using HOC to control NEURON
	HOC and Python interoperability via NEURON

