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ABSTRACT

Neuronal function involves the interaction of electrical and chemical signals that are
distributed in time and space. The mechanisms that generate these signals and regulate their
interactions are marked by a rich diversity of properties that precludes a “one size fits all”
approach to modeling. This paper shows how the model description language NMODL enables
the neuronal simulation environment NEURON to accommodate these differences.

INTRODUCTION

Recently we described the core concepts and strategies that are responsible for much of the
utility of NEURON as a tool for empirically-based neuronal modeling (Hines and Carnevale
1997). That paper focused on the strategy used in NEURON to deal with the problem of mapping
a spatially distributed system into a discretized (compartmental) representation in a manner that
ensures conceptual control while at the same time maintaining numeric accuracy and
computational efficiency. Now we shift our attention to another important feature of NEURON:
its special facility for expanding and customizing its library of biophysical mechanisms.

The need for this facility stems from the fact that experimentalists are applying an ever-
growing armamentarium of techniques to dissect neuronal operation at the cellular level. There is
a steady increase in the number of phenomena that are known to participate in electrical and
chemical signaling and that are characterized well enough to support empirically-based
simulations. Since the mechanisms that underlie these phenomena differ across neuronal cell
class, developmental stage, and species (e.g. chapter 7 in (Johnston and Wu 1995); also see
(McCormick 1998)), a simulator that is useful in research must provide a flexible and powerful
means for incorporating new biophysical mechanisms in models. It must also help the user
remain focused on the model instead of programming. Such a means is provided to the
NEURON simulation environment by NMODL, a high-level language that was originally
implemented for NEURON by Michael Hines and later extended by him and Upinder Bhalla to
generate code suitable for linking with GENESIS (Wilson and Bower 1989).

A brief overview of how NMODL is used will clarify its underlying rationale. The first step
is to write a text file (a “mod file”) that describes a mechanism as a set of nonlinear algebraic
equations, differential equations, or kinetic reaction schemes. The description employs a syntax
that closely resembles familiar mathematical and chemical notation. This text is passed to a
translator that converts each statement into many statements in C, automatically generating code
that handles details such as mass balance for each ionic species and producing code suitable for
each of NEURON’s integration methods. The output of the translator is then compiled for
computational efficiency. This achieves tremendous conceptual leverage and savings of effort not
only because the high-level mechanism specification is much easier to understand and far more
compact than the equivalent C code, but also because it spares the user from having to bother
with low-level programming issues like how to “interface” the code with other mechanisms and
with NEURON itself.

Because of the unusual structure and features of the NMODL language, it would be futile to attempt
explanation without illustration. Therefore this paper is organized around a sequence of examples of
increasing complexity and sophistication that introduce important topics in the context of problems of
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scientific interest. These examples show how to take advantage of the leverage provided by
NMODL for creating representations of biophysical mechanisms.

DESCRIBING MECHANISMS WITH NMODL
NMODL is a descendant of the MOdel Description Language (MODL (Kohn et al. 1994)),

which was developed at Duke University by the National Biomedical Simulation Resource
project for the purpose of building models that would be exercised by the Simulation Control
Program (SCoP (Kootsey et al. 1986)). NMODL has the same basic syntax and style of
organizing model source code into named blocks as MODL. Variable declaration blocks, such as
PARAMETER, STATE, and ASSIGNED, specify names and attributes of variables that are used in
the model. Other blocks are directly involved in setting initial conditions or generating solutions
at each time step (the equation definition blocks, e.g. INITIAL , BREAKPOINT, DERIVATIVE,
KINETIC , FUNCTION, PROCEDURE). Furthermore, C code can be inserted inside the model
source code to accomplish implementation-specific goals.

NMODL recognizes all the keywords of MODL, but we will limit this discussion to those
that are relevant to NEURON simulations. We will also examine the changes and extensions that
were necessary to endow NMODL with NEURON-specific features. To give these ideas real
meaning, they will be presented in the context of NMODL text for models of the following
mechanisms:
• a passive “leak” current and a localized transmembrane shunt (density mechanisms vs. point

processes)
• an electrode stimulus (discontinuous parameter changes with variable time step methods)
• voltage-gated channels (differential equations vs. kinetic schemes)
• ion accumulation in a restricted space (extracellular K+)
• buffering, diffusion, and active transport (Ca2+ pump)
• synaptic transmission
This paper makes extensive use of specialized concepts and terminology that pertain to
NEURON itself; for definitive treatment of these the reader is referred to prior publications
((Hines 1984; Hines 1989; Hines 1993; Hines 1994; Hines and Carnevale 1995), but particularly
(Hines and Carnevale 1997)) and NEURON’s on-line help files, which are available through
links at http://www.neuron.yale.edu.

Example 1: a passive “leak” current

A passive “leak” current is one of the simplest biophysical mechanisms. Because it is
distributed over the surface of a cell, it is described in terms of conductance per unit area and
current per unit area, and therefore belongs to the class of “density mechanisms” (Hines and
Carnevale 1997). Other density mechanisms include ion accumulation in a restricted space and
active transport.
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Figure 1 illustrates a branch of a neuron
with a distributed leak current (left) and the
equivalent circuit of a model of the passive
current mechanism (right): a distributed
constant conductance gleak in series with a
voltage source Eleak equal to the equilibrium
potential for the ionic current. The leak current
density is given by i leak = gleak (Vm – Eleak),
where Vm is the membrane potential. Because
this is a model of a physical system that is distributed in space, the variables i leak and Vm and the
parameters gleak and Eleak are all functions of position.

Let us examine the NMODL text for an implementation of this model (Listing 1). Inline
comments start with a colon and terminate at the end of the line. NMODL also allows comment
blocks, which are demarcated by the keywords COMMENT . . . ENDCOMMENT. In passing it
should be noted that a similar syntax can be used to embed C code in a mod file, e.g.

VERBATIM
/* c statements */

ENDVERBATIM

The statements between VERBATIM and ENDVERBATIM will appear without change in the output
file that is written by the NMODL translator. Although this should be done only with great care,
VERBATIM can be a convenient and effective way for individual users to add new features to
NEURON or even to employ NEURON as a “poor man’s C compiler.”

: A passive leak current

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT i
RANGE i, e, g

}

PARAMETER {
g = 0.001  (siemens/cm2)  < 0, 1e9 >
e = -65    (millivolt)

}

ASSIGNED {
i  (milliamp/cm2)
v  (millivolt)

}

BREAKPOINT { i = g*(v - e) }

Listing 1. leak.mod

Named blocks have the general form KEYWORD { statements }, and keywords are all upper
case. User-defined variable names in NMODL can be up to 20 characters long. Each variable

Figure 1
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must be defined before it is used. The variable names chosen for this example were i , g, and e
for the leak current, its specific conductance, and its equilibrium potential, respectively. Some
variables are not “owned” by any mechanism but are available to all mechanisms; these include
v , celsius , t , dt , diam , and area .

As an aside, it should be noted that use of dt  in NMODL is neither necessary nor good
practice. Prior to the availability of variable time step methods in NEURON, analytic expressions
involving dt  were frequently used for efficient modeling of voltage sensitive channel states. This
idiom is now built-in and employed automatically when such models are described in their
underlying derivative form.

The NEURON block

The principal extension that differentiates NMODL from its MODL origins is that there are
separate instances of mechanism data, with different values of states and parameters, in each
segment (compartment) of a model cell. The NEURON block was introduced to make this possible
by defining what the model of the mechanism looks like from the “outside” when there are many
instances of the model sprinkled at different locations on the cell. The specifications entered in
this block are independent of any particular simulator, but the detailed “interface code”
requirements of a particular simulator determine whether the output C file is suitable for
NEURON (NMODL) or GENESIS (GMODL). For this paper, we assume the translator is
NMODL and that it produces code accepted by NEURON.

The actual name of the current NMODL translator is nocmodl  (nocmodl.exe  on the PC).
This translator is consistent with the object-oriented extensions that were introduced with version
3 of NEURON. However, the older translator which predated these extensions was called
nmodl , and we will use the generic name NMODL to refer to NEURON-compatible translators.

The SUFFIX keyword has two consequences. First, it identifies this to be a density
mechanism, which can be incorporated into a NEURON cable section by an insert  statement
(see Usage below). Second, it tells the NEURON interpreter that the names for variables and
parameters that belong to this mechanism will include the suffix _leak , so there will be no
conflict with similar names in other mechanisms.

The stipulation that i  is a NONSPECIFIC_CURRENT also has two consequences. First, the
value of i  will be reckoned in charge balance equations. Second, this current will make no direct
contribution to mass balance equations (it will have no direct effect on ionic concentrations). We
will show how to model mechanisms with specific ionic currents that can change concentrations
in later examples.

The RANGE keyword asserts that the values of i , e, and g are functions of position. In other
words, each of these variables can have a different value in each of the segments that make up a
section. In the NEURON interpreter, manipulation of these variables uses the RANGE variable
syntax (Hines and Carnevale 1997). The alternative to RANGE is GLOBAL, which is discussed
below in The PARAMETER block.

The membrane potential v  is not mentioned in the NEURON block for two reasons. First, v  is
one of the variables that are available to all mechanisms. Second, it is not necessary to assert that
v  is a RANGE variable because membrane potential is a RANGE variable by default. However, for
model completeness in non-NEURON contexts, and to enable units checking, v  should be
declared in the ASSIGNED block (see below).
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Variable declaration blocks

As noted above, each user-defined variable must be declared before it is used. Even if it is
named in the NEURON block, it still has to appear in a variable declaration block.

Mechanisms frequently involve expressions that contain a mix of constants and variables
whose units belong to different scales of investigation and which may themselves be defined in
terms of other, more “fundamental” units. This can easily lead to arithmetic errors that can be
difficult to isolate and rectify. Therefore NMODL has special provisions for establishing and
maintaining consistency of units. To facilitate unit checking, each variable declaration includes a
specification of its units in parentheses. The names used for these specifications are based on the
UNIX units database. A variable whose units are not specified is taken to be dimensionless.

The user may specify whatever units are appropriate except for variables that are defined by
NEURON itself. These include v  (millivolts), t  (milliseconds), celsius  (ºC), diam  (µm), and
area  (µm2). Currents, concentrations, and equilibrium potentials created by the USEION
statement also have specific units (see The NEURON block in Example 6: extracellular
potassium accumulation below). In this particular density mechanism, i  and g are given units
of current per unit area (milliamperes/cm2) and conductance per unit area (siemens/cm2),
respectively.

The PARAMETER block

Variables whose values are normally specified by the user are parameters and are declared in
a PARAMETER block. In the NEURON graphical user interface (GUI), a parameter is viewed
using a special field editor which is designed to facilitate the entry of new values (see Usage
below).

While parameters generally remain constant during a simulation, they can be changed in mid-
run if necessary to emulate some external influence on the characteristic properties of a model.
To avoid confusion, such changes should only be performed through the hoc interpreter or the
GUI, and not by statements in the mod file.

The PARAMETER block in this example gives default values of 0.001 siemens/cm2 and –65
mV to g and e, respectively. The pair of values in angle brackets specifies the default minimum
and maximum values for g that can be entered into the field editor of the GUI. In this case, we
merely ensure that conductance g cannot be negative.

Because g and e are PARAMETERs, their values are visible at the hoc level and can be
overridden by hoc commands or altered through the GUI. PARAMETERs ordinarily have global
scope, which means that changing the value of a PARAMETER affects every instance of that
mechanism throughout an entire model. However, the NEURON block for this particular
mechanism stipulates that g and e are RANGE variables, so they can be given different values in
every segment where the leak current has been inserted.

The ASSIGNED block

The ASSIGNED block is used for declaring two kinds of variables: those that are given values
outside the mod file, and those that appear on the left hand side of assignment statements within
the mod file. The first group includes variables that are potentially available to every mechanism,
such as v , celsius , t , and ionic variables (ionic variables are discussed in connection with The
NEURON block in Example 6: extracellular potassium accumulation below). The second group
specifically omits variables that are unknowns in a set of simultaneous linear or nonlinear
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algebraic equations, or that are dependent variables in differential equations or kinetic reaction
schemes, which are handled differently (see Example 4: a voltage-gated current below for a
discussion of the STATE block).

Mechanism-specific ASSIGNED variables are RANGE variables by default. For a mechanism-
specific ASSIGNED variable to be visible outside of the mod file, it must be declared as RANGE or
GLOBAL in the NEURON block. ASSIGNED variables that are not “owned” by any mechanism (v ,
celsius , t , dt , diam , and area ) are not mentioned in the NEURON block.

The current i  is not a state variable because the model of the leak current mechanism does
not define it in terms of a differential equation or kinetic reaction scheme; that is to say, i  has no
dynamics of its own. Furthermore it is not an unknown in a set of equations. Instead, it is
calculated by direct assignment. Therefore it is declared in the ASSIGNED block.

For similar reasons membrane potential v  is also declared in the ASSIGNED block. Although
membrane potential is unquestionably a state variable in a model of a cell, to the leak current
mechanism it is a driving force rather than a state variable.

Equation definition blocks

In this simple model there is only one equation, which is defined in the BREAKPOINT block.

The BREAKPOINT block

This is the main computation block in NMODL. Its name derives from SCoP, in which
simulations are executed by incrementing an independent variable through a sequence of steps or
“breakpoints” at which the dependent variables of the model are computed and displayed (Kohn
et al. 1994).

At exit from the BREAKPOINT block, all variables should be consistent with the independent
variable. The independent variable in NEURON is always time t , and neither t  nor the time step
dt  should be changed in NMODL.

A single formula is all that is necessary for the leak current model. As we shall see later,
more complicated models may require invoking NMODL’s built-in routines to solve families of
simultaneous algebraic equations or perform numeric integration.

Usage

The following hoc code illustrates how this mechanism might be used. Note the use of
RANGE syntax to examine the value of i_leak  near one end of cable .

cable {
nseg = 5
insert leak
// override defaults
g_leak = 0.002  // S/cm2
e_leak = -70    // mV

}

// show leak current density near 0 end of cable
print cable.i_leak(0.1)
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Because of the interface code generated as a consequence of the
definitions in the NEURON block, the leak  mechanism will appear
with the other density mechanisms in the Distributed
Mechanism Manager  and Viewer  windows. This is illustrated in
Figure 2, which shows the Distributed Mechanism Inserter .
The check mark signifies that the leak  mechanism has been
inserted into the section named cable .

Example 2: a localized shunt

At the opposite end of the spatial scale from a distributed passive current is a localized shunt
induced by microelectrode impalement (Durand 1984; Staley et al. 1992). A shunt is restricted to
a small enough region that it can be described in terms of a net conductance (or resistance) and
total current, i.e. it is a point process (Hines and Carnevale 1997). Most synapses are also best
represented by point processes.

The localized nature of the shunt is emphasized
in the cartoon of the neurite (Fig.3 left). The
equivalent circuit of the shunt (right) is similar to the
equivalent circuit of the distributed leak current
(Fig.1 right), but here the resistance and current are
understood to be concentrated in a single,
circumscribed part of the cell. We will focus on how
the NMODL code for this model differs from the
density mechanism presented earlier.

: A shunt current

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i
RANGE i, e, r

}

PARAMETER {
r = 1 (gigaohm)  < 1e-9, 1e9 >
e = 0 (millivolt)

}

ASSIGNED {
i  (nanoamp)
v  (millivolt)

}

BREAKPOINT { i = (0.001)*(v - e)/r }

Listing 2. shunt.mod

Figure 2

Figure 3
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The NEURON block

The NEURON block identifies this mechanism as a point process, which means that it will be
managed in hoc using an object-oriented syntax (see Usage below). Making i , e, and r  RANGE
variables means that each instance of this point process can have separate values for these
variables. If a variable is instead asserted to be GLOBAL, then its value would be shared among all
instances of the mechanism.

Variable declaration blocks

These are nearly identical to the PARAMETER and ASSIGNED blocks of the leak  mechanism.
However, Shunt  is a point process so all of its current flows at one site instead of being
distributed over an area. Therefore its i  and r  are in units of nanoamperes (total current) and
gigaohms (0.001 / total conductance in microsiemens), respectively.

This code specifies default values for the PARAMETERs r  and e. Allowing a minimum value
of 10–9 for r  prevents an inadvertent divide by 0 error (infinite conductance) by ensuring that a
user cannot set r  to 0 in its GUI field editor. This protection, however, only holds for field
editors and does not prevent an interpreter statement from setting r  to 0 or even a negative value.

Equation definition blocks

Like the leak current mechanism, the shunt mechanism is extremely simple and involves no
state variables. The single equation is defined in the BREAKPOINT block.

The BREAKPOINT block

The sole “complication” in this block is that the calculation of i  includes a factor of 0.001 to
reconcile the units on the left and right hand sides of this assignment (nanoamperes vs. millivolts
divided by gigaohms). The parentheses surrounding this conversion factor are a convention that
is necessary for units checking: they disambiguate it from mere multiplication by a number.
When NEURON’s unit checking utility modlunit  is used to check the NMODL code in Listing
2, it will find no errors and will exit without an error message.

f:\modfils\leak\shunt>modlunit shunt.mod
model   $Revision: 1.1.1.1 $   $Date: 1994/10/12 17:22:51 $
Checking units of shunt.mod

f:\modfils\leak\shunt>

However if the parentheses were omitted, an error message would be emitted that reports
inconsistent unit factors.

f:\modfils\leak\shunt>modlunit shunt.mod
model   $Revision: 1.1.1.1 $   $Date: 1994/10/12 17:22:51 $
Checking units of shunt.mod
The previous primary expression with units: 1-12 coul/sec
is missing a conversion factor and should read:
  (0.001)*()
 at line 20 in file shunt.mod
        i = 0.001*(v - e)/r<<ERROR>>
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An error message would also result if parentheses
surrounded a number which the user intended to be a
quantity, since the unit factors would be inconsistent.

The convention of using single numbers enclosed in
parentheses to signify unit conversion factors is simple and
minimizes the possibility of mistakes either by the user or
by the software. It is important to note that expressions that
involve more than one number, such as “(1 + 1)”, will not
be interpreted as conversion factors.

Usage

This hoc code illustrates how the shunt mechanism
might be applied to a section called cable ; note the object
syntax for specifying the shunt resistance and current (see
(Hines and Carnevale 1997)).

objref s
// put near 0 end of cable
cable s = new Shunt(0.1)
// not bad for a sharp electrode
s.r = 0.2
// show shunt current
print s.i

The definitions in the NEURON block of this particular model enable NEURON’s graphical
tools to include the Shunt  object in the menus of its Point Process Manager  and Viewer
windows (Fig.4). The check mark on the button adjacent to the numeric field for r  indicates that
the shunt resistance has been changed from its default value (0.2 gigaohm when the shunt was
created by the hoc code immediately above) to 0.1 gigaohm.

Example 3: an intracellular stimulating electrode

An intracellular stimulating electrode is similar to a shunt in the sense that both are localized
sources of current that are modeled as point processes. However, the current from a stimulating
electrode is not generated by an opening in the cell membrane but instead is injected directly into
the cell. This particular model of a stimulating electrode has the additional difference that the
current changes discontinuously, i.e. it is a pulse with distinct start and stop times.

: Current clamp

NEURON {
POINT_PROCESS IClamp1
RANGE del, dur, amp, i
ELECTRODE_CURRENT i

}

UNITS { (nA) = (nanoamp) }

Figure 4
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PARAMETER {
del (ms)
dur (ms)  < 0, 1e9 >
amp (nA)

}

ASSIGNED { i (nA) }

INITIAL { i = 0 }

BREAKPOINT {
at_time(del)
at_time(del+dur)

if (t < del + dur && t > del) {
i = amp

} else {
i = 0

}
}

Listing 3. iclamp1.mod

The NEURON block

This mechanism is identical to the built-in IClamp  model. Calling it IClamp1  allows the
reader to test and modify it without conflict with the existing IClamp  point process.

This model of a current clamp generates a rectangular current pulse whose amplitude amp in
nanoamperes, start time del  in milliseconds, and duration dur  in milliseconds are all adjustable
by the user. Furthermore, these parameters are individually adjustable for each separate instance
of this mechanism. Therefore they are declared as RANGE variables in the NEURON block.

The current i  delivered by IClamp1  is declared in the NEURON block to make it available for
examination. The ELECTRODE_CURRENT statement has two important consequences: positive
values of i  will depolarize the cell (in contrast to the hyperpolarizing effect of positive
transmembrane currents), and when the extracellular  mechanism is present there will be a
change in the extracellular potential vext . Further discussion of extracellular fields is beyond the
scope of this paper.

Equation definition blocks

The BREAKPOINT block

The logic for deciding whether i  = 0 or i  = amp is straightforward, but the at_time()  calls
need explanation. To work properly with variable time step methods, e.g. CVODE, models that
change parameters discontinuously during a simulation must notify NEURON when such events
take place. With fixed time step methods, users implicitly assume that events take place on time
step boundaries (integer multiples of dt ), and they would never consider defining a pulse
duration narrower than dt . Neither eventuality can be left to chance with variable time step
methods.
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During a variable time step simulation, the first
at_time()  call guarantees that a time step boundary will
be at del  – ε, where ε is on the order of 10–9 ms.
Integration will then restart from its new initial condition at
del  + ε. For more information, see Discontinuities in
PARAMETERs below.

The INITIAL  block

The code in the INITIAL  block is executed when the
hoc function finitialize()  is called. Initialization of
more complex mechanisms is discussed below in Example
4: a voltage-gated current and Example 6: extracellular
potassium accumulation. The initialization here consists
of making sure that IClamp1.i  is 0 when t  = 0.

Usage

Regardless of whether a fixed or variable time step
integrator is chosen, IClamp1  looks the same to the user. In either case, a current stimulus of
0.01 nA amplitude that starts at t  = 1 ms and lasts for 2 ms would be created by this hoc code or
through the GUI panel (Fig.5).

objref ccl
// put at middle of soma
soma ccl = new IClamp1(0.5)
ccl.del = 1
ccl.dur = 2
ccl.amp = 0.01

Example 4: a voltage-gated current

One of the particular strengths of NMODL is its flexibility in dealing with ion channels
whose conductances are not constant but instead are regulated by factors such as the
transmembrane potential gradient and/or the concentrations of ligands on one or both sides of the
membrane. Here we will use the well-known Hodgkin-Huxley (HH) delayed rectifier to show
how a voltage-gated current can be implemented, and later we will examine a model of a
potassium (K+) current that depends on both voltage and intracellular calcium concentration.

The delayed rectifier and all other voltage-gated channels that are distributed over the cell
surface are density mechanisms. Therefore their NMODL representations and hoc usage will
have many similarities to those of the passive leak current presented in Example 1. The following
discussion focuses on the significant differences between the models of the delayed rectifier and
the passive leak current.

In this example, membrane potential is in absolute millivolts, i.e. reversed in polarity from
the original Hodgkin-Huxley convention and shifted to reflect a resting potential of –65 mV.

Figure 5
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: HH voltage-gated potassium current

NEURON {
SUFFIX kd
USEION k READ ek WRITE ik
RANGE gkbar, gk, ik

}

UNITS {
(S)  = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)

}

PARAMETER { gkbar = 0.036 (S/cm2) }

ASSIGNED {
v (mV)
ek (mV) : typically ~ -77.5
ik (mA/cm2)
gk (S/cm2)

}

STATE { n }

BREAKPOINT {
SOLVE states METHOD cnexp
gk = gkbar * n^4
ik = gk * (v - ek)

}

INITIAL {
: Assume v has been constant for a long time
n = alpha(v)/(alpha(v) + beta(v))

}

DERIVATIVE states {
: Computes state variable n at present v & t
n' = (1-n)*alpha(v) - n*beta(v)

}

FUNCTION alpha(Vm (mV)) (/ms) {
LOCAL x
UNITSOFF
x = (Vm+55)/10
if (fabs(x) > 1e-6) {

alpha = 0.1*x/(1 - exp(-x))
}else{

alpha = 0.1/(1 - 0.5*x)
}
UNITSON

}
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FUNCTION beta(Vm (mV)) (/ms) {
UNITSOFF
beta = 0.125*exp(-(Vm+65)/80)
UNITSON

}

Listing 4. kd.mod

The NEURON block

As with the passive model, SUFFIX marks this as a density mechanism, whose variables and
parameters will be identified in hoc by a particular suffix. Three RANGE variables are declared in
this block: the peak conductance density gkbar  (the product of channel density and “open”
conductance per channel), the macroscopic conductance gk  (the product of gkbar  and the
fraction of channels that are open at any moment), and the current ik  that passes through gk . At
the level of hoc, these will be available as gkbar_kd , gk_kd , and ik_kd .

This model also has a fourth RANGE variable: the gating variable n, which is declared in the
STATE block (see The STATE block below). STATE variables are automatically RANGE variables
and do not need to be declared in the NEURON block.

A mechanism needs a separate USEION statement for each of the ions that it affects or is
affected by. This example has one USEION statement, which includes READ ek  because the
potential gradient that drives ik_kd  depends on the equilibrium potential for K+. Since the
resulting ionic flux may affect local [K+], this example also includes WRITE ik  so that
NEURON can keep track of the total outward current that is carried by an ion, its internal and
external concentrations, and its equilibrium potential. We will return to this point in the context
of a model with extracellular K+ accumulation.

The UNITS block

The statements in the UNITS block define new names for units in terms of existing names in
the UNIX units database. This can increase legibility and convenience, and is helpful both as a
reminder to the user and as a means for automating the process of checking for consistency of
units.

Variable declaration blocks

The ASSIGNED block

This is analogous to the ASSIGNED block of the leak  mechanism. For the sake of clarity,
variables whose values are computed outside this mod file are listed first. Note that ek  is listed as
an ASSIGNED variable, unlike e of the leak mechanism which was a PARAMETER. The reason for
this difference is that mechanisms that produce K+ fluxes may cause the equilibrium potential ek
to change in the course of a simulation. However, the equilibrium potential for the leak current
was not linked to a specific ionic species and therefore will remain fixed unless explicitly altered
by hoc statements or the GUI.
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The STATE block

If a model involves differential equations, families of algebraic equations, or kinetic reaction
schemes, their dependent variables or unknowns are to be listed in the STATE block. Therefore
gating variables such as the delayed rectifier’s n are declared here.

In this paper we will refer to variables that are declared in the STATE block as STATE
variables, or simply STATEs. This NMODL-specific terminology should not be confused with the
physics or engineering concept of a “state variable” as a variable that describes the state of a
system. While membrane potential is a “state variable” in the engineering sense, it would never
be a STATE because its value is calculated only by NEURON and never by NMODL code.
Likewise, the unknowns in a set of simultaneous equations (e.g. specified in a LINEAR or
NONLINEAR block) would not be state variables in an engineering sense, yet they would all be
STATEs.

All STATEs are automatically RANGE variables. This is appropriate, since channel gating can
vary with position along a neurite.

Equation definition blocks

In addition to the BREAKPOINT block, this model also has INITIAL , DERIVATIVE, and
FUNCTION blocks.

The BREAKPOINT block

This is the main computation block of the mechanism. By the end of the BREAKPOINT block,
all variables are consistent with the new time. If a mechanism has STATEs, this block must
contain one SOLVE statement that tell how the values of the STATEs will be computed over each
time step. The SOLVE statement specifies a block of code that defines the simultaneous equations
that govern the STATEs. Currents are set with assignment statements at the end of the
BREAKPOINT block.

There are two major reasons why variables that depend on the number of times they are
executed, such as counts or flags or random variables, should in general not be calculated in a
BREAKPOINT block. First, the assignment statements in a BREAKPOINT block are usually called
twice per time step. Second, with variable time step methods the value of t  may not even be
monotonically increasing. The metaphor to keep in mind is that the BREAKPOINT block is
responsible for making all variables consistent at time t . Thus assignment statements in this
block are responsible for trivially specifying the values of variables which depend only on the
values of STATEs, t , and v , while the SOLVE statements perform the magic required to make the
STATEs consistent at time t . It is not belaboring the point to reiterate that the assignment
statements should produce the same result regardless of how many times BREAKPOINT is called
with the same STATEs, t , and v . All too often errors have resulted from an attempt to explicitly
compute what is conceptually a STATE in a BREAKPOINT block. Computations that must be
performed only once per time step should be placed in a PROCEDURE, which in turn would be
invoked by a SOLVE statement in a BREAKPOINT block.

In this connection it should be emphasized that the SOLVE statement is not a function call,
and that the body of the DERIVATIVE block (or any other block specified by a SOLVE statement)
will be executed asynchronously with respect to BREAKPOINT assignment statements. Therefore
it is incorrect to invoke rate functions from the BREAKPOINT block; instead these must be called
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from the block that is specified by the SOLVE statement (in this example, from within the
DERIVATIVE block).

Models of active currents such as ik_kd  are generally formulated in terms of ionic
conductances that are functions of voltage- and time-dependent gating variables. The SOLVE
statements at the beginning of the BREAKPOINT block specify the differential equations or
kinetic schemes that govern the kinetics of the gating variables. The algebraic equations that
compute the ionic conductances and currents follow the SOLVE statements.

For mechanisms whose STATEs are described by differential equations, it is often most
convenient and efficient to use one of NEURON’s built-in numerical integrators. A good choice
for this particular mechanism is cnexp , which is described below in connection with the
DERIVATIVE block.

The INITIAL  block

The INITIAL  block may contain any instructions that should be executed when the hoc
function finitialize()  is called. Though often overlooked, proper initialization of all
STATEs is as important as correctly computing their temporal evolution. This is accomplished for
the common case by finitialize() , which executes the initialization strategy defined in the
INITIAL  block for each mechanism. Prior to executing the INITIAL  block, STATE values are
set to their values in the STATE declaration block (or set to 0 if it was not given a specific value
in the STATE declaration block).

For this delayed rectifier mechanism, n is set to its steady-state value for the membrane
potential that exists in the compartment. This potential itself can be “left over” from a previous
simulation run, or it can be specified by the user, e.g. on a compartment by compartment basis
using statements such as dend.v(0.2) = -48  before calling finitialize() , or uniformly
over the entire cell with a statement like finitialize(-55) .

Initialization strategies. The INITIAL  block should be used to initialize STATEs with respect
to the initial values of membrane potential and ionic concentrations. It should be noted that there
are several other ways to prepare STATEs for a simulation run. The most direct is simply to
assign values explicitly using hoc statements such as cable.n_kd(0.3) = 0.9 , but this can
create arbitrary initial conditions that would be quite “unnatural.”

A more “physiological” approach, which may be appropriate for models of oscillating or
chaotic systems or whose mechanisms show other complex interactions, would be to perform an
“initialization run” during which the model converges toward its limit cycle or attractor. A
practical alternative for systems that settle to a stable equilibrium point when left undisturbed is
to assign t  a large negative value and then advance the simulation over several large time steps
(keeping t  < 0 prevents the initialization steps from triggering scheduled events such as stimulus
currents or synaptic inputs). This tactic takes advantage of the strong stability properties of
NEURON’s implicit integration methods.

With either approach, once the initialization transients have decayed, the STATEs can be
saved to a SaveState  object that can then be kept in memory or written to a file for future re-
use. The following example shows how to restore STATEs properly, assuming that they are
contained in a SaveState  object named mystates . When STATEs are restored, it is necessary
to make sure that the variable order variable time step integrator is properly initialized; this is the
purpose of cvode.re_init() , which has no effect if one is using a fixed time step method.
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proc init() {
// set Vm to v_init, t to 0,
//   and call INITIAL block in all mechanisms
finitialize(v_init)

mystates.restore()

// make all assigned variables (currents, conductances,
//   equilibrium potentials) consistent with the STATEs
fcurrent()

//  initialize the cvode integrator
cvode.re_init()  // no effect if cvode is not active

}

The DERIVATIVE block

This is used to assign values to the derivatives of those STATEs that are described by
differential equations. The statements in this block are of the form y' = expr, where a series of
apostrophes can be used to signify higher-order derivatives.

For NEURON's fixed time step integration method, these equations are integrated using the
numerical method specified by the SOLVE statement in the BREAKPOINT block. The SOLVE
statement should explicitly invoke one of the integration methods that is appropriate for systems
in which state variables can vary widely during a time step (stiff systems). The cnexp  method
used in this example combines second-order accuracy with computational efficiency. It is
appropriate when the right hand side of y' = f(v,y) is linear in y, so it is well-suited to models with
HH-style ionic currents. This method calculates the STATEs analytically under the assumption
that all other variables are constant throughout the time step. If the variables change but are
second-order correct at the midpoint of the time step, then the calculation of STATEs is also
second-order correct.

If f(v,y) is not linear in y, then the implicit integration method derivimplicit  should be
used. This provides first-order accuracy and is usable with general ODEs regardless of stiffness
or nonlinearity.

With variable time step methods, no variable is assumed to be constant. These methods not
only change the time step, but adaptively choose a numerical integration formula with local error
that ranges from first-order up to O(∆t6). The present implementation of NMODL creates a
diagonal Jacobian approximation for the block of STATEs. If yi' = fi(v,y) is polynomial in yi this is
done analytically, otherwise by numerical differencing. In the rare case where this is inadequate,
the user may supply an explicit Jacobian. Future versions of NMODL may attempt to deal with
Jacobian evaluation in a more sophisticated manner. This illustrates a particularly important
benefit of the NMODL approach: improvements in methods do not affect the high level
description of the membrane mechanism.

The FUNCTION block

The functions defined by FUNCTION blocks are available at the hoc level and in other
mechanisms by adding the suffix of the mechanism in which they are defined, e.g. alpha_kd()
and beta_kd() . Functions or procedures can be simply called from hoc if they do not reference
RANGE variables (references to GLOBAL variables are allowed). If a function or procedure does
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reference a RANGE variable, then prior to calling the function from hoc it is necessary to specify
the proper instance of the mechanism (its location on the cell). This is done by a setdata_
function that has the syntax

section_name { setdata_ suffix(x) }

where section_name is the name of the section that contains the mechanism in question, suffix is
the mechanism suffix, and x  is the normalized distance along the section where the particular
instance of the mechanism exists. The functions in our kd  example do not use RANGE variables,
so a specific instance is not needed.

The differential equation that describes the kinetics of n involves two voltage-dependent rate
constants whose values are computed by the functions alpha()  and beta() . The original
algebraic form of the equations that define these rates is
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The denominator for α  goes to 0 when v = –55 mV, which could cause numeric overflow. The
code used in alpha()  avoids this by switching, when v is very close to –55, to an alternative
expression that is based on the first three terms of the infinite series expansion of ex.

As noted elsewhere in this paper, NMODL has features that facilitate establishing and
maintaining consistency of units. Therefore the rate functions alpha()  and beta()  are
introduced with the syntax

FUNCTION f_name( arg1 (units1), arg2 (units2), . . . )  (returned_units)

to declare that their arguments are in units of millivolts and that their returned values are in units
of inverse milliseconds (“/ms”). This allows automatic units checking on entry to and return from
these functions. For the sake of legibility the UNITSOFF . . . UNITSON directives disable units
checking just within the body of these functions. This is acceptable because the terms in the
affected statements are mutually consistent. Otherwise the statements would have to be rewritten
in a way that makes unit consistency explicit at the cost of legibility, e.g.

x = (Vm + 55 (millivolt))/(10 (millivolt))

Certain variables exist solely for the sake of computational convenience. These typically
serve as scale factors, flags, or temporary storage for intermediate results, and are not of primary
importance to the mechanism. Such variables are often declared as LOCAL variables within an
equation block, e.g. x  in this mechanism. LOCAL variables that are declared in an equation block
are not “visible” outside the block and they do not retain their values between invocations of the
block. LOCAL variables that are declared outside an equation block have very different properties
and are discussed under Variable declaration blocks in Example 8: calcium diffusion with
buffering .
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Usage

The hoc code and graphical
interface for using this distributed
mechanism are similar to those for
the leak  mechanism (Fig.2).
However, the kd  mechanism
involves more RANGE variables, and
this is reflected in the choices
available in the RANGE variable
menu of NEURON’s Plot  what?
tool for graph windows. Since kd
uses potassium, the variables ek
and ik  (total K+ current) appear in
this list along with the variables that
are explicitly declared as RANGE
and STATE in kd.mod  (see Fig.6).
The total K+ current ik  will differ
from ik_kd  only if another
mechanism that WRITEs ik  is
present in this section.

Example 5: a calcium-activated voltage-gated current

This model of a potassium current that depends on both voltage and intracellular calcium
concentration [Ca2+] i. is based on the work of Moczydlowski and Latorre (1983). It is basically
an elaboration of the HH mechanism in which the forward and backward rates depend jointly on
membrane potential and [Ca2+] i.. Here we point out the salient implementational differences
between this and the previous model.

: Calcium activated K channel

NEURON {
SUFFIX cagk
USEION ca READ cai
USEION k READ ek WRITE ik
RANGE gkbar
GLOBAL oinf, tau

}

UNITS {
(mV)    = (millivolt)
(mA)    = (milliamp)
(S)     = (siemens)
(molar) = (1/liter )
(mM)    = (millimolar)
FARADAY = (faraday) (kilocoulombs)
R       = (k-mole) (joule/degC)

}

Figure 6
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PARAMETER {
gkbar = 0.01  (S/cm2)
d1    = 0.84
d2    = 1.0
k1    = 0.18  (mM)
k2    = 0.011 (mM)
bbar  = 0.28  (/ms)
abar  = 0.48  (/ms)

}

ASSIGNED {
cai      (mM)    : typically 0.001
celsius  (degC)  : typically 20
v        (mV)
ek       (mV)
ik       (mA/cm2)
oinf
tau      (ms)

}

STATE { o }    : fraction of channels that are open

BREAKPOINT {
SOLVE state METHOD cnexp
ik = gkbar*o*(v - ek)

}

DERIVATIVE state {
rate(v, cai)
o' = (oinf - o)/tau

}

INITIAL {
rate(v, cai)
o = oinf

}

: the following are all callable from hoc

FUNCTION alp(v (mV), ca (mM)) (/ms) {
alp = abar/(1 + exp1(k1,d1,v)/ca)

}

FUNCTION bet(v (mV), ca (mM)) (/ms) {
bet = bbar/(1 + ca/exp1(k2,d2,v))

}

FUNCTION exp1(k (mM), d, v (mV)) (mM) {
: numeric constants in an addition or subtraction
: expression automatically take on the unit values
: of the other term
exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))

}
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PROCEDURE rate(v (mV), ca (mM)) {
LOCAL a
: LOCAL variable takes on units of right hand side
a = alp(v,ca)
tau = 1/(a + bet(v, ca))
oinf = a*tau

}

Listing 5. cagk.mod

The NEURON block

Because the potassium conductance depends on [Ca2+] i, two USEION statements are required.
The RANGE statement declares only the peak conductance density gkbar , so this mechanism’s
ionic conductance will not be visible from hoc (in fact, the activated ionic conductance density is
not even calculated in this model). Likewise, there will be no ik_cagk  that reports this
particular current component separately, even though it will be added to the total K+ current ik
because of WRITE ik .

The variables oinf  and tau , which govern the gating variable o, should be accessible in hoc
for the purpose of seeing how they vary with membrane potential and [Ca2+] i. At the same time,
the storage and syntax overhead required for a RANGE variable does not seem warranted because
it appears unlikely to be necessary or useful to plot either oinf  or tau  as a function of space.
Therefore they have been declared to be GLOBAL rather than RANGE. On first examination, this
might seem to pose a problem. The gating of this K+ current depends on membrane potential and
[Ca2+] i, both of which may vary with location, so how can it be correct to use GLOBALs for oinf
and tau ? And if some reason did arise to examine the values of these variables at a particular
location, how could this be done? We shall see that the answers to these questions lie in the
DERIVATIVE and PROCEDURE blocks.

The UNITS block

The last two statements in this block require some clarification. The first parenthesized item
on the right hand side of the equal sign is the numeric value of a standard entry in the UNIX units
database, which may be expressed on a scale appropriate for physics rather than membrane
biophysics. The second parenthesized item acts like a scale factor that converts it to the specific
units chosen for this model. Thus (faraday)  appears in the units database in terms of
coulombs/mole and has a numeric value of 96,485.309, but for this particular mechanism we
prefer to use a constant whose units are kilocoulombs/mole. The statement

FARADAY = (faraday) (kilocoulombs)

results in FARADAY having units of kilocoulombs and a numeric value of 96.485309. The item
(k-mole)  in the statement

R       = (k-mole) (joule/degC)
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is not kilomoles but instead is a specific entry in the units database equal to the product of
Boltzmann's constant and Avogadro's number. The end result of this statement is that R has units
of joules/°C and a numeric value of 8.313424. These special definitions of FARADAY and R
pertain to this mechanism only; a different mechanism could assign different units and numeric
values to these labels.

Another possible source of confusion is the interpretation of the symbol “e”. This is always
the electronic charge (~ 1.6 · 10-19 coulombs), except outside the UNITS block where a single
number in parentheses is treated as a conversion factor, e.g. the expression (2e4)  is treated as a
conversion factor of 2 · 104. Although errors involving “e” in a units expression are easy to make,
they are always caught by modlunit .

Variable declaration blocks

The ASSIGNED block

Comments in this block can be helpful to the user as reminders of “typical” values or usual
conditions under which a mechanism operates. For example, the cagk  mechanism is intended for
use in the context of [Ca2+] i on the order of 0.001 mM. Similarly, the temperature sensitivity of
this mechanism is accommodated by including the global variable celsius . NEURON’s default
value for celsius  is 6.3ºC, but as the comment in this mod file points out, the parameter values
for this particular mechanism were intended for an “operating temperature” of 20ºC. Therefore
the user may need to change celsius  through hoc or the GUI.

The variables oinf  and tau , which were made accessible to NEURON by the GLOBAL
statement in the NEURON block, are given values by the procedure rate  and are declared as
ASSIGNED.

The STATE block

Because o, the fraction of channels that are open, is described by a differential equation, this
mechanism needs a STATE block.

Equation definition blocks

The BREAKPOINT block

This mechanism does not make its ionic conductance available to hoc, so the BREAKPOINT
block just calculates the ionic current passing through these channels and doesn’t bother with
separate computation of a conductance.

The DERIVATIVE block

The gating variable o is governed by a first-order differential equation. The procedure rate
assigns values to the voltage-sensitive parameters of this equation: the steady-state value oinf ,
and the time constant tau .

This provides the answer to the first question that was raised above in the discussion of the
NEURON block. The procedure rate  will be executed individually for each segment in the model
that has the cagk  mechanism. Each time rate  is called, its arguments will equal the membrane
potential and [Ca2+] i of the segment that is being processed, since v  and cai  are both RANGE
variables. Therefore oinf  and tau  can be GLOBAL without destroying the spatial variation of the
gating variable o.
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The FUNCTION and PROCEDURE blocks

The functions alp() , bet() , exp1() , and the procedure rate()  implement the
mathematical expressions that describe oinf  and tau . To facilitate units checking, their
arguments are tagged with the units that they use. The rate()  procedure achieves some
efficiency by calling alp()  once and using the returned value twice; calculating oinf  and tau
separately would have required two calls to alp() .

The procedure rate()  helps answer the second question that was raised in the discussion of
the NEURON block: how to examine the variation of oinf  and tau  over space. This is easily done
in hoc with code such as

forall { // iterate over all sections
for (x) { // iterate over each segment

rate(v(x), cai(x))
// here put statements to plot
//   or save oinf and tau

}
}

Usage

This mechanism involves both K+ and Ca2+,
so the list of RANGE variables displayed by
Plot  what?  has more entries than it did for
the kd  mechanism (compare Figs.7 and 6).
However, cai , cao , and eca  will remain
constant unless the section in which this
mechanism has been inserted also includes
something that can affect calcium concentration
(e.g. a pump or buffer).

Example 6: extracellular potassium accumulation

Because mechanisms can generate
transmembrane fluxes that are attributed to
specific ionic species by the USEION x WRITE ix
syntax, modeling the effects of restricted
diffusion is straightforward. The kext
mechanism described here emulates the
accumulation of potassium in the extracellular
space adjacent to squid axon (Fig.8). The
experiments of Frankenhaeuser and Hodgkin
(1956) indicated that satellite cells and other

Figure 7

Figure 8
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extracellular structures act as a diffusion barrier that prevents free communication between this
space and the bath. Therefore, when there is a large efflux of K+ ions from the axon, e.g. during
the repolarizing phase of an action potential or in response to injected depolarizing current, K+

builds up in the “Frankenhaeuser-Hodgkin space” (F-H space). This elevation of [K+]o shifts EK

in a depolarized direction, which has two important consequences. First, it reduces the driving
force for K+ efflux and causes a decline of the outward IK. Second, when the action potential
terminates or the injected depolarizing current is stopped, the persistent elevation of EK causes a
slowly decaying depolarization or inward current. This depolarizing shift dissipates gradually as
[K +]o equilibrates with [K+]bath.

: Extracellular potassium ion accumulation

NEURON {
  SUFFIX kext
  USEION k READ ik WRITE ko
  GLOBAL kbath
  RANGE fhspace, txfer
}

UNITS {
  (mV)    = (millivolt)
  (mA)    = (milliamp)
  FARADAY = (faraday) (coulombs)
  (molar) = (1/liter)
  (mM)    = (millimolar)
}

PARAMETER {
  kbath   =  10 (mM)        : seawater (squid axon!)
  fhspace = 300 (angstrom)  : effective thickness of F-H space
  txfer   =  50 (ms)  : tau for F-H space <-> bath exchange = 30-100
}

ASSIGNED { ik  (mA/cm2) }

STATE { ko  (mM) }

BREAKPOINT { SOLVE state METHOD cnexp }

DERIVATIVE state {
  ko' = (1e8)*ik/(fhspace*FARADAY) + (kbath - ko)/txfer
}

Listing 6. kext.mod

The NEURON block

A compartment may contain several mechanisms that have direct interactions with ionic
concentrations (e.g. diffusion, buffers, pumps). Therefore NEURON must be able to compute the
total currents and concentrations consistently. The USEION statement sets up the necessary
“bookkeeping” by automatically creating a separate mechanism that keeps track of four essential
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variables: the total outward current carried by an ion, the internal and external concentrations of
the ion, and its equilibrium potential. In this case the name of the ion is “k” and the
automatically-created mechanism is called “k_ion ” in the hoc interpreter. The k_ion
mechanism has variables ik , ki , ko , and ek , which represent IK, [K+] i, [K

+]o, and EK,
respectively. These do not have suffixes; furthermore, they are RANGE variables so they can have
different values in every segment of each section in which they exist. In other words, the K+

current through Hodgkin-Huxley potassium channels near one end of the section cable  would
be cable.ik_hh(0.1) , but the total K+ current generated by all sources, including other ionic
conductances and pumps, would be cable.ik(0.1) .

This mechanism computes [K+]o from the outward potassium current, so it READs ik  and
WRITEs ko . When a mechanism WRITEs a particular ionic concentration, this means that it sets
the value for that concentration at all locations in every section into which it has been inserted.
This has an important consequence: in any given section, no ionic concentration should be
“written” by more than one mechanism.

The bath is assumed to be a large, well-stirred compartment that envelops the entire
“experimental preparation.” Therefore kbath  is a GLOBAL variable so that all sections that
contain the kext  mechanism will have the same numeric value for [K+]bath. Since this would be
one of the controlled variables in an experiment, the value of kbath  is specified by the user and
will remain constant during the simulation. The thickness of the F-H space is fhspace , the time
constant for equilibration with the bath is txfer , and both are RANGE variables so they can vary
along the length of each section.

Variable declaration blocks

The PARAMETER block

The default value of kbath  is set to 10 mM, consistent with the composition of seawater
(Frankenhaeuser and Hodgkin 1956). Since kbath  is GLOBAL, a single hoc statement can change
this to a new value that will affect all occurrences of the kext  mechanism, e.g. kbath_kext =
8 would change it to 8 mM everywhere.

The STATE block

Ionic concentration is a STATE of a mechanism only if that mechanism calculates the
concentration. This model computes ko , the potassium concentration in the F-H space, according
to the dynamics specified by an ordinary differential equation.

Equation definition blocks

The BREAKPOINT block

This mechanism involves a single differential equation that tells the rate of change of ko , the
K+ concentration in the F-H space. The choice of integration method in NMODL is based on the
recognition that the equation is linear in ko . The total K+ current ik  might also vary during a
time step (see the DERIVATIVE block) if membrane potential, some K+ conductance, or ko  itself
is changing rapidly. In a simulation where such rapid changes were likely to occur, proper
modeling practice would lead one either to use NEURON with CVODE, or to use a fixed time
step that would be short compared to the rate of change of ik .
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The INITIAL  block

The only STATE in this mechanism is the ionic concentration ko , so this mechanism does not
have an INITIAL  block. This is because the model translator for NEURON ignores default
values for ionic concentrations. Any assignment to an ion concentration in an INITIAL  block
will result in an inconsistent initialization on return from finitialize() . Furthermore, in this
particular model it is likely to be too limiting to set ko  = kbath .

Instead, concentrations should be initialized in hoc. Choosing the best way to do this depends
on the design and intended use of the model in which the mechanism has been embedded: is the
concentration supposed to start at the same value in all sections where the mechanism has been
inserted, or should it be nonuniform from the outset?

Take the case of a mechanism that WRITEs an ion concentration. Such a mechanism has an
associated global variable that can be used to initialize the concentration to the same value in
each section where the mechanism exists. These global variables have default values for na, k
and ca  that are “reasonable” but probably incorrect for any specific preparation. The default
concentrations for ion names created by the user are 1 mM; these should be assigned correct
values in hoc. A subsequent call to finitialize()  will use this to initialize the ionic
concentration.

The name of the global variable is formed from the name of the ion that the mechanism uses
and the concentration that it WRITEs. For example, the kext  mechanism uses k  and WRITEs ko ,
so the corresponding global variable is ko0_k_ion . The sequence of instructions

ko0_k_ion = 10      // seawater, 4 x default value (2.5)
ki0_k_ion = 4*54.4  // 4 x default value, preserves ek
finitialize(v_init) // v_init is the starting Vm

will set ko  to 10 mM and ki  to 217.6 mM in every segment that has the kext  mechanism.
What if one or more sections of the model are supposed to have different initial

concentrations? For these particular sections the ion_style()  function would be used to assert
that the global variable is not to be used to initialize the concentration for this particular ion. The
numeric arguments in the statement

dend ion_style("k_ion",3,2,1,1,0)

would have the following effects on the kext  mechanism in the dend  section (in sequence):
treat ko  as a STATE variable; treat ek  as an ASSIGNED variable; on call to finitialize()  use
the Nernst equation to compute ek  from the concentrations; compute ek  from the concentrations
on every call to fadvance() ; do not use ko0_k_ion  or ki0_k_ion  to set the initial values of
ko  and ki . The proper initialization would now be to set ko  and ki  explicitly for this section,
e.g.

ko0_k_ion = 10  // all sections start with ko = 10 mM
dend {ko = 5  ki = 2*54.4}  //  . . . except dend
finitialize(v_init)

A complete discussion of ion_style() , its arguments, and its actions is contained in
NEURON’s help system.
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The DERIVATIVE block

At the core of this mechanism is a single differential equation that relates d[K +]o/dt to the
sum of two terms. The first term describes the contribution of ik  to [K+]o, subject to the
assumption that the thickness F-H space is much smaller than the diameter of the section. The
unit conversion factor of 108 is required because fhspace  is given in Ångstroms. The second
term describes the exchange of K+ between the bath and the F-H space.

Usage

If this mechanism is present in a section, the following RANGE variables will be accessible
through hoc: [K+] inside the cell and within the F-H space (ki  and ko ); equilibrium potential and
total current for K (ek  and ik ); thickness of the F-H space and the rate of equilibration between
it and the bath (fhspace_kext  and txfer_kext ). The bath [K+] will also be available as the
global variable kbath_kext .

General comments about kinetic schemes

Kinetic schemes provide a high level framework that is perfectly suited for compact and
intuitively clear specification of models that involve discrete states in which “material” is
conserved. The basic notion in such mechanisms is that flow out of one state equals flow into
another. Almost all models of membrane channels, chemical reactions, macroscopic Markov
processes, and ionic diffusion are elegantly expressed through kinetic schemes. It will be helpful
to review some fundamentals before proceeding to specific examples of mechanisms
implemented with kinetic schemes.

The unknowns in a kinetic scheme, which are usually concentrations of individual reactants,
are declared in the STATE block. The user expresses the kinetic scheme with a notation that is
very similar to a list of simultaneous chemical reactions. The NMODL translator converts the
kinetic scheme into a family of ODEs whose unknowns are the STATEs. Hence the simple

STATE { mc    m }
KINETIC scheme1 {

~ mc <-> m (a(v), b(v))
}

is equivalent to

DERIVATIVE scheme1 {
mc' = -a(v)*mc + b(v)*m
m'  =  a(v)*mc - b(v)*m

}

The first character of a reaction statement is the tilde “~” , which is used to immediately
distinguish this kind of statement from other sequences of tokens that could be interpreted as an
expression. The expression to the left of the three character reaction indicator “<-> ”  specifies the
reactants, and the expression immediately to the right specifies the products. The two expressions
in parentheses specify the forward and reverse reaction rates (here the rate functions a(v)  and
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b(v) ). After each reaction, the variables f_flux  and b_flux  are assigned the values of the
forward and reverse fluxes respectively. These can be used in assignment statements such as

~ cai + pump <-> capump (k1,k2)
~ capump <-> pump + cao (k3,k4)
ica = (f_flux - b_flux)*2*Faraday/area

In this case, the forward flux is k3*capump , the reverse flux is k4*pump*cao , and the positive-
outward current convention is consistent with the sign of the expression for ica  (in the second
reaction, forward flux means positive ions move from the inside to the outside).

More complicated reaction sequences such as the wholly imaginary

KINETIC scheme2 {
~ 2A + B <-> C (k1,k2)
~  C + D <-> A + 2 B (k3,k4)

}

begin to show the clarity of expression and suggest the comparative ease of modification of the
kinetic representation over the equivalent but stoichiometrically confusing

DERIVATIVE scheme2 {
A' = -2*k1*A^2*B + 2*k2*C   + k3*C*D   - k4*A*B^2
B' =   -k1*A^2*B   + k2*C + 2*k3*C*D - 2*k4*A*B^2
C' =    k1*A^2*B   - k2*C   - k3*C*D   + k4*A*B^2
D' =                        - k3*C*D   + k4*A*B^2

}

Clearly a statement such as

~ calmodulin + 3Ca <-> active (k1, k2)

would be easier to modify (e.g. so it requires combination with 4 calcium ions) than the relevant
term in the three differential equations for the STATEs that this reaction affects. The kinetic
representation is easy to debug because it closely resembles familiar notations and is much closer
to the conceptualization of what is happening than the differential equations would be.

Another benefit of kinetic schemes is the simple polynomial nature of the flux terms, which
allows the translator to easily perform a great deal of preprocessing that makes implicit numerical
integration more efficient. Specifically, the nonzero elements ∂ ′ ∂y yi j  (partial derivatives of

dy dti  with respect to yj ) of the sparse matrix are calculated analytically in NMODL and

collected into a C function that is called by solvers to calculate the Jacobian. Furthermore, the
form of the reaction statements determines if the scheme is linear, obviating an iterative
computation of the solution. Voltage-sensitive rates are allowed, but to guarantee numerical
stability the rate constants should not be functions of STATEs. Thus writing the calmodulin
example as

~ calmodulin <-> active (k3*Ca^3, k2)
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will work but is potentially unstable if Ca is a STATE in other simultaneous reactions in the same
mod file. Variable time step methods such as CVODE will compensate by reducing dt , but this
will make the simulation run more slowly.

Kinetic scheme representations provide a great deal of leverage because a single compact
expression is equivalent to a large amount of C code. One special advantage from the
programmer’s point of view is the fact that these expressions are independent of the solution
method. Different solution methods require different code, but the NMODL translator generates
this code automatically. This saves the user’s time and effort and ensures that all code expresses
the same mechanism. Another advantage is that the NMODL translator handles the task of
interfacing the mechanism to the remainder of the program. This is a tedious exercise that would
require the user to have special knowledge that is not relevant to neurophysiology and which may
change from version to version.

Special issues are raised by mechanisms that involve fluxes between compartments of
different size, or whose reactants have different units. The first of the following examples has
none of these complications, which are addressed later in models of diffusion and active
transport.

Example 7: kinetic scheme for a voltage-gated current

This illustration of NMODL’s facility for handling kinetic schemes implements a simple
three-state model for the conductance state transitions of a voltage-gated potassium current

C C O1 2

kf

kb

kf

kb

1

1

2

2

 →←   →← 

The closed states are C1 and C2, the open state is O, and the rates of the forward and backward
state transitions are calculated in terms of the equilibrium constants and time constants of the
isolated reactions through the familiar expressions K v kf kbi i i

� 
=  and τ i i iv kf kb

� � � �
= +1 . The

equilibrium constants K vi � �  are given by the Boltzmann factors K e
k d v k d v

1
2 2 1 1= − − −

� � � �
 and

K e k d v
2

2 2= − −
� �

, where the energies of states C1, C2, and O are 0, k d v1 1 −
� �

, and k d v2 2 −
� �

respectively.
The typical sequence of analysis is to determine the constants k1, d1, k2, and d2 by fitting the

steady-state voltage clamp data, and then to find the voltage-sensitive transition time constants
τ1 v

� �
 and τ 2 v

� �
 from the temporal properties of the clamp current at each voltage pulse level. In

this example the steady-state information has been incorporated in the NMODL code, and the
time constants are conveyed by tables (arrays) that are created within the interpreter.
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: Three state kinetic scheme for HH-like potassium channel
: Steady-state v-dependent state transitions have been fit
: Needs v-dependent time constants from tables created under hoc

NEURON {
SUFFIX k3st
USEION k READ ek WRITE ik
RANGE g, gbar

}

UNITS { (mV) = (millivolt) }

PARAMETER {
gbar = 33     (millimho/cm2)
d1   = -38    (mV)
k1   = 0.151  (/mV)
d2   = -25    (mV)
k2   = 0.044  (/mV)

}

ASSIGNED {
v    (mV)
ek   (mV)
g    (millimho/cm2)
ik   (milliamp/cm2)
kf1  (/ms)
kb1  (/ms)
kf2  (/ms)
kb2  (/ms)

}

STATE { c1 c2 o }

BREAKPOINT {
SOLVE kin METHOD sparse
g = gbar*o
ik = g*(v - ek)*(1e-3)

}

INITIAL { SOLVE kin STEADYSTATE sparse }

KINETIC kin {
rates(v)
~ c1 <-> c2 (kf1, kb1)
~ c2 <-> o (kf2, kb2)
CONSERVE c1 + c2 + o = 1

}

FUNCTION_TABLE tau1(v(mV)) (ms)
FUNCTION_TABLE tau2(v(mV)) (ms)
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PROCEDURE rates(v(millivolt)) {
LOCAL K1, K2
K1 = exp(k2*(d2 - v) - k1*(d1 - v))
kf1 = K1/(tau1(v)*(1+K1))
kb1 = 1/(tau1(v)*(1+K1))
K2 = exp(-k2*(d2 - v))
kf2 = K2/(tau2(v)*(1+K2))
kb2 = 1/(tau2(v)*(1+K2))

}

Listing 7. k3st.mod

The NEURON block

With one exception, the NEURON block of this model is essentially the same as for the
delayed rectifier presented above in Example 4: a voltage-gated current. The difference is that,
even though this model contributes to the total K+ current ik , its own current is not available
separately (i.e. there will be no ik_k3st  at the hoc level) because ik  is not declared as a RANGE
variable.

Variable declaration blocks

The STATE block

The STATEs in this mechanism are the fractions of channels that are in closed states 1 or 2 or
in the open state. Since the total number of channels in all states is conserved, the sum of the
STATEs must be unity

c1  + c2  + o = 1

This conservation law means that the k3st  mechanism really has only two independent state
variables, a fact that underscores the difference between a STATE in NMODL and the concept of
a state variable. It also affects how NMODL sets up the equations that are to be solved, as we
will see in the discussion of the KINETIC  block below.

Not all reactants or products need to be STATEs. If the reactant is an ASSIGNED or
PARAMETER variable, then a differential equation is not generated for it, and it is treated as
constant for the purposes of calculating the declared STATEs. Statements such as

PARAMETER {kbath (mM)}
STATE {ko (mM)}
KINETIC scheme3 {

~ ko <-> kba th (r, r)
}

are translated to the single ODE equivalent

ko' = r*(kbath - ko)

i.e. ko  tends exponentially to the steady state value of kbath .
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Equation definition blocks

The BREAKPOINT block

The recommended idiom for integrating a kinetic scheme is

BREAKPOINT {
SOLVE scheme METHOD sparse
. . .

}

which integrates the STATEs in the scheme one dt  step per call to fadvance()  in NEURON.
The sparse  method is generally faster than computing the full Jacobian matrix, though both use
Newton iterations to advance the STATEs with a fully implicit method (first-order correct).
Additionally, the sparse  method separates the Jacobian evaluation from the calculation of the
STATE derivatives, thus allowing variable time step methods, such as CVODE, to efficiently
compute only what is needed to advance the STATEs. Non-implicit methods, such as Runge-
Kutta or Euler, should be avoided since kinetic schemes commonly have very wide ranging rate
constants that make these methods numerically unstable with reasonable dt  steps. In fact, it is
not unusual to specify equilibrium reactions such as

~ A <-> B (1e6*sqrt(K), 1e6/sqrt(K))

which can only be solved by implicit methods.

The INITIAL  block

Initialization of a kinetic scheme to its steady state values is accomplished with

INITIAL {
SOLVE scheme STEADYSTATE sparse

}

Appropriate CONSERVE statements should be part of the scheme (see the following discussion of
the KINETIC  block) so that the equivalent system of ODEs is linearly independent. It should be
kept in mind that source fluxes (constant for infinite time) have a strong effect on the steady
state. Finally, it is crucial to test the scheme in NEURON under conditions in which the correct
behavior is known.

The KINETIC  block

The voltage-dependent rate constants are computed in the separate procedure rates() . That
procedure computes the equilibrium constants K1 and K2 from the constants k1 , d1, k2 , and d2,
whose empirically-determined default values are given in the PARAMETERs block, and membrane
potential v . The time constants tau1  and tau2 , however, are found from tables created under
hoc (see The FUNCTION_TABLEs below).

The other item of note in this block is the CONSERVE statement. As mentioned above in
General comments about kinetic schemes, the fundamental idea is to systematically account
for conservation of material. When there is neither a source nor a sink reaction for a STATE, the
differential equations are not linearly independent when calculating steady states (dt  approaches
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infinity). For example, in scheme1  above the steady state condition m'  = mc'  = 0 yields two
identical equations. Steady states can be approximated by integrating for several steps from any
initial condition with large dt , but roundoff error can be a problem if the Jacobian matrix is
nearly singular. To solve the equations while maintaining strict numerical conservation
throughout the simulation (no accumulation of roundoff error), the user is allowed to explicitly
specify conservation equations with the CONSERVE statement. The conservation law for
scheme1  is expressed as

CONSERVE m + mc = 1

The CONSERVE statement does not add to the information content of a kinetic scheme and
should be considered only as a hint to the translator. The NMODL translator uses this algebraic
equation to replace the ODE for the last STATE on the left side of the equal sign. If one of the
STATE names is an array, the conservation equation will contain an implicit sum over the array.
If the last STATE is an array, then the ODE for the last STATE array element will be replaced by
the algebraic equation. The choice of which STATE ODE is replaced by the algebraic equation is
implementation-dependent and does not affect the solution (to within roundoff error). If a
CONSERVEd STATE is relative to a compartment size, then compartment size is implicitly taken
into account for the STATEs on the left hand side of the CONSERVE equation (see Example 8 for
discussion of the COMPARTMENT statement). The right hand side is merely an expression, in
which any necessary compartment sizes must be included explicitly.

Thus in a calcium pump model

Ca Pump Ca Pump Ca Pumpint ext+  →←  •  →←  +
k

k

k

k

1

2

3

4

the pump is conserved and one could write

CONSERVE pump + pumpca = total_pump * pumparea

The FUNCTION_TABLEs

As noted above, the steady-state clamp data define the voltage dependence of K1 and K2, but
a complete description of the K+ current requires analysis of the temporal properties of the clamp
current to determine the rate factors at each of the command potentials. The result would be a list
or table of membrane potentials with associated time constants. One way of dealing with these
numeric values would be to fit them with a pair of approximating functions, but the tactic used in
this example is to leave them in tabular form for NMODL’s FUNCTION_TABLE to deal with.

This is done by placing the numeric values in three hoc Vector s, say v_vec , tau1_vec ,
and tau2_vec , where the first is the list of voltages and the other two, at corresponding indices,
give the time constants. These Vector s would be attached to the FUNCTION_TABLEs of this
model with the hoc commands

table_tau1_k3st(tau1_vec, v_vec)
table_tau2_k3st(tau2_vec, v_vec)
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Then whenever tau1(x)  is called in the NMODL file, or tau1_k3st(x)  is called from hoc,
the interpolated value of the array is returned.

A useful feature of FUNCTION_TABLEs is that prior to developing the Vector  database, they
can be attached to a scalar value as in

table_tau1_k3st(100)

effectively becoming constant functions. Also FUNCTION_TABLEs can be declared with two
arguments and doubly dimensioned hoc arrays attached to them. The latter is useful, for example,
with voltage- and calcium-sensitive rates. In this case the table is linearly interpolated in both
dimensions.

Usage

Inserting this mechanism into a section makes the STATEs c1_k3st , c2_k3st , and o_k3st
available at the hoc level, as well as the conductances gbar_k3st  and g_k3st .

Example 8: calcium diffusion with buffering

This mechanism illustrates how to use kinetic schemes to model intracellular Ca2+ diffusion
and buffering. It differs from the prior example in several important aspects: Ca2+ is not
conserved but instead enters as a consequence of the transmembrane Ca2+ current; diffusion
involves the exchange of Ca2+ between compartments of unequal size; Ca2+ is buffered.

Only free Ca2+ is assumed to be mobile, whereas bound Ca2+ and free buffer are stationary.
The Ca2+ buffer concentration and rate constants are based on the bullfrog sympathetic ganglion
cell model described by Yamada et al. (1989). For a thorough treatment of numeric solution of
the diffusion equations the reader is referred to Oran and Boris (1987).

Modeling diffusion with kinetic schemes

Diffusion is modeled as the exchange of Ca2+

between adjacent compartments. For radial
diffusion, the compartments are a series of
concentric shells around a cylindrical core, as
shown in Fig.9 for Nannuli  = 4. The index of the
outermost shell is 0 and the index of the core is
Nannuli  – 1. The outermost shell is half as thick
as the others so that [Ca2+] will be second-order
correct with respect to space at the surface of the
segment. Concentration is also second-order
correct midway through the thickness of the other
shells and at the center of the core. These depths are indicated by “x” in Fig.9. The radius of the
cylindrical core equals the thickness of the outermost shell, and the intervening Nannuli  – 2
shells each have thickness ∆r = diam  / 2 (Nannuli  – 1), where diam  is the diameter of the
segment.

Because segment diameter and the number of shells affect the dimensions of the shells, they
also affect the time course of diffusion. The flux between adjacent shells is ∆[Ca2+] DCa A / ∆r,

Figure 9
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where ∆[Ca2+] is the concentration difference between the shell centers, DCa is the diffusion
coefficient for Ca2+, A is the area of the boundary between shells, and ∆r is the distance between
their centers. This suggests that diffusion can be described by the basic kinetic scheme

FROM i = 0 TO Nannuli-2 {
~ ca[i] <-> ca[i+1] (f[i+1], f[i+1])

}

where Nannuli  is the number of shells, ca[i]  is the concentration midway through the
thickness of shell i  (except for ca[0]  which is the concentration at the outer surface of shell 0),
and the rate constants f[i+1]  equal DCa A i+1 / ∆r. For each adjacent pair of shells, both Ai+1 and
∆r are directly proportional to segment diameter. Therefore the ratios Ai+1 / ∆r depend only on
shell index, i.e. once they have been computed for one segment, they can be used for all segments
that have the same number of radial compartments regardless of segment diameter.

As it stands, this kinetic scheme is dimensionally incorrect. Dimensional consistency requires
that the product of STATEs and rates be in units of STATE per time. In the present example the
STATEs ca[]  are intensive variables (concentration, or mass/volume), so the product of f[]  and
ca[]  must be in units of concentration per time. However, the rates have units of volume per
time, so this product is in units of mass per time, i.e. a flux that signifies the rate at which Ca2+ is
entering or leaving a compartment. This flux is the time derivative of an extensive variable.

This disparity is corrected by specifying STATE volumes with the COMPARTMENT statement,
as in

COMPARTMENT volume  { state1 state2  . . . }

where the STATEs named in the braces have the same compartment volume given by the volume
expression after the COMPARTMENT keyword. The volume merely multiplies the dSTATE/dt left
hand side of the equivalent differential equations, converting it to an extensive quantity and
making it consistent with flux terms in units of absolute quantity per time.

The volume of each cylindrical shell depends on its index and the total number of shells, and
is proportional to the square of segment diameter. Consequently the volumes can be computed
once for a segment with unit diameter and then scaled by diam^2  for use in each segment that
has the same Nannuli .

The equations that describe the radial movement of Ca2+ are independent of segment length.
Therefore it is convenient to express shell volumes and surface areas in units of µm2

(volume/length) and µm (area/length), respectively.

: Calcium ion accumulation with radial and longitudinal diffusion

NEURON {
SUFFIX cadifus
USEION ca READ cai, ica WRITE cai
GLOBAL vrat, TotalBuffer  : vra t must be GLOBAL--see INITIAL block
                          : however TotalBuffer may be RANGE

}

DEFINE Nannuli 4
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UNITS {
(molar) = (1/liter)
(mM)    = (millimolar)
(um)    = (micron)
(mA)    = (milliamp)
FARADAY = (faraday)  (10000 coulomb)
PI      = (pi)       (1)

}

PARAMETER {
DCa   = 0.6 (um2/ms)
k1buf = 100 (/mM-ms) : Yamada et al. 1989
k2buf = 0.1 (/ms)
TotalBuffer = 0.003  (mM)

}

ASSIGNED {
diam      (um)
ica       (mA/cm2)
cai       (mM)
vrat[Nannuli]  : numeric value of vrat[i]  equals the volume
               : of annulus i of a 1um diameter cylinder
               : multiply by diam^2 to get volume per um length
Kd        (/mM)
B0        (mM)

}

STATE {
: ca[0] is equivalent to cai
: ca[] are very small, so specify absolute tolerance
ca[Nannuli]       (mM) <1e-10>
CaBuffer[Nannuli] (mM)
Buffer[Nannuli]   (mM)

}

BREAKPOINT { SOLVE state METHOD sparse }

LOCAL factors_done

INITIAL {
   if (factors_done == 0) {  : flag becomes 1 in the first segment
      factors_done = 1       :   all subsequent segments will have
      factors()              :   vrat = 0 unless vrat is GLOBAL
   }

Kd = k1buf/k2buf
B0 = TotalBuffer/(1 + Kd*cai)

FROM i=0 TO Nannuli-1 {
ca[i] = cai
Buffer[i] = B0
CaBuffer[i] = TotalBuffer - B0

}
}
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LOCAL frat[Nannuli]  : scales the rate constants for model geometry

PROCEDURE factors() {
LOCAL r, dr2
r = 1/2                : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2  : full thickness of outermost annulus,
                       : ha lf thickness of all other annuli
vrat[0] = 0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {

vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2  : interior half
r = r - dr2
frat[i+1] = 2*PI*r/(2*dr2)  : outer radius of annulus
                            : div by distance between centers
r = r - dr2
vrat[i+1] = PI*(r+dr2/2)*2*dr2  : outer half of annulus

}
}

LOCAL dsq, dsqvol  : can't define local variable in KINETIC block
                   :   or use in COMPARTMENT statement

KINETIC state {
COMPARTMENT i, di am*diam*vrat[i] {ca CaBuffer Buffer}
LONGITUDINAL_DIFFUSION i, DCa*diam*diam*vrat[i] {ca}
~ ca[0] << (-ica*PI*diam/(2*FARADAY))  : ica is Ca efflux
FROM i=0 TO Nannuli-2 {

~ ca[i] <-> ca[i+1]  (DCa*frat[i+1], DCa*frat[i+1])
}
dsq = diam*diam
FROM i=0 TO Nannuli-1 {

dsqvol = dsq*vrat[i]
~ ca[i] + Buffer[i] <-> CaBuffer[i]  (k1buf*dsqvol, k2buf*dsqvol)

}
cai = ca[0]

}

Listing 8. cadif.mod

The NEURON block

This model READs cai  to initialize the buffer (see The INITIAL  block), and it WRITEs cai

because it computes [Ca2+] in the outermost shell during a simulation run. It also READs ica ,
which is the Ca2+ influx into the outermost shell.

There are two GLOBALs. One is the total buffer concentration TotalBuffer , which is
assumed to be uniform throughout the cell. The other is vrat , an array whose elements will be
the numeric values of the (volume/length) of the shells for a segment with unit diameter. These
values are computed by PROCEDURE factors()  near the end of Listing 8. As noted above, a
segment with diameter diam  has shells with volume/length equal to diam^2  *  vrat[i] .
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Because each instance of this mechanism has the same number of shells, the same vrat[i]  can
be used to find the shell volumes at each location in the model cell where the mechanism exists.

The DEFINE statement sets the number of shells to 4. Many of the variables in this model are
arrays, and NMODL arrays are not dynamic. Instead, their lengths must be specified when the
NMODL code is translated to C.

The UNITS block

Faraday’s constant is scaled here in order to avoid having to include this scale factor as a
separate term in the statement in the KINETIC  block where transmembrane current ica  is
reckoned as the efflux of Ca2+ from the outermost shell. Since each statement in a UNITS block
must include an explicit assertion of the units that are involved, the statement that assigns the
value 3.141 . . . to PI  includes a (1)  which signifies that this is a dimensionless constant.

Variable declaration blocks

The ASSIGNED block

The variable vrat  is declared to be an array with Nannuli  elements. As with C, array
indices run from 0 to Nannuli  – 1. The variables Kd and B0 are the dissociation constant for the
buffer and the initial value of free buffer, which are computed in the INITIAL  block (see below).
Both the total buffer and the initial concentration of Ca2+ are assumed to be uniform throughout
all shells, so a scalar is used for B0.

The STATE block

In addition to diffusion, this mechanism involves Ca2+ buffering that follows the reaction

Ca+ Buffer Ca Buffer
k

k

buf

buf

1

2

 →←  •

This takes place in each of the shells, so ca , Buffer  and CaBuffer  are all arrays.
The declaration of ca[]  uses the syntax state (units) <absolute_tolerance> to specify the

absolute tolerance that will be employed by CVODE. The solver attempts to use a step size for
which the local error εi for each statei satisfies at least one of these two inequalities:

εi < relative_tolerance · |statei|
or

εi < absolute_tolerance

The default values for these tolerances are 0 and 10–2, respectively, so only a STATE that is
extremely small (such as intracellular [Ca2+]) needs to have its absolute tolerance specified. As
an alternative to specifying a smaller absolute tolerance, ca[]  could have been defined in terms
of units such as micromolar or nanomolar, which would have increased the numeric value of
these variables. This would necessitate a change of scale factors in many of the statements that
involve ca[] . For example, the assignment for cai  (which is required to be in mM) would be
cai = (1e-6)*ca[0] .
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LOCAL variables declared outside of equation definition blocks

A LOCAL variable that is declared outside of an equation definition block is equivalent to a
static variable in C. That is, it is visible throughout the mechanism (but not at the hoc level), it
retains its value, and it is shared between all instances of a given mechanism. The initial value of
such a variable is 0.

This particular mechanism employs four variables of this type: factors_done , frat[] ,
dsq , and dsqvol . The meaning of each of these is discussed below.

Equation definition blocks

The INITIAL  block

Initialization of this mechanism is a two step process. The first step is to use PROCEDURE
factors()  (see below) to set up the geometry of the model by computing the scale factor arrays
vrat[]  and frat[]  that are applied to the shell volumes and rate constants. This only has to be
done once because the same scale factors are used for all segments that have the same number of
shells, as noted above in Modeling diffusion with kinetic schemes. The variable
factors_done  is a flag that indicates whether vrat[]  and frat[]  have been computed. The
NMODL keyword LOCAL means that the value of factors_done  will be the same in all
instances of this mechanism, but that it will not be visible at the hoc level. Therefore factors()
will be executed only once, regardless of how many segments contain the cadifus  mechanism.

The second step is to initialize the mechanism’s STATEs. This mechanism assumes that the
total buffer concentration and the initial free calcium concentration are uniform in all shells, and
that buffering has reached its steady-state. Therefore the initial concentration of free buffer is
computed from the initial [Ca2+] and the buffer’s dissociation constant. It should be noted that
the value of cai  will be set to cai0_ca_ion  just prior to executing the code in the INITIAL
block (see also The INITIAL  block in Example 6: extracellular potassium accumulation).

It may be instructive to compare this initialization strategy with the approach that was used
for the voltage-gated current of Listing 7 (k3st.mod ). That previous example initialized the
STATEs through numeric solution of a kinetic scheme, so its KINETIC  block required a
CONSERVE statement to ensure that the equivalent system of ODEs would be linearly
independent. Here, however, the STATEs are initialized by explicit algebraic assignment, so no
CONSERVE statement is necessary.

PROCEDURE factors()

The arrays vrat[]  and frat[] , which are used to scale the shell volumes and rate constants
to ensure consistency of units, are computed here. The elements of vrat[]  are the volumes of a
set of concentric cylindrical shells, whose total volume equals the volume of a cylinder with
diameter and length of 1 µm. These values are computed in two stages by the FROM i=0 TO
Nannuli-2 { }  loop. The first stage finds the volume of the outer half and the second finds the
volume of the inner half of the shell.

The frat  array is declared to be LOCAL because it applies to all segments that have the
cadifus  mechanism, but it is unlikely to be of interest to the user and therefore does not need to
be visible at the hoc level. This contrasts with vrat , which is declared as GLOBAL within the
NEURON block so that the user can see its values. The values frat[i+1]  equal Ai+1 / ∆r, where
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A i+1 is the surface area between shells i  and i+1  for 0 ≤ i  < Nannuli , and ∆r is the distance
between shell centers (radius / (Nannuli  – 1)).

The KINETIC  block

The first statement in this block specifies the shell volumes for the STATEs ca , CaBuffer ,
and Buffer . As noted above in Modeling diffusion with kinetic schemes, these volumes equal
the elements of vrat[]  multiplied by the square of the segment diameter. Because this
mechanism involves many compartments whose relative volumes are specified by the elements
of an array, this example takes care of all compartments with a single statement of the form

COMPARTMENT index, volume[ index] { state1 state2 . . . }

where the STATEs that are diffusing are listed inside the braces.
Next in this block is a LONGITUDINAL_DIFFUSION statement, which specifies that this

mechanism includes nonlocal diffusion, i.e. longitudinal diffusion along a section and into
connecting sections. The syntax for scalar STATEs is

LONGITUDINAL_DIFFUSION flux_expr {  state1 state2 . . . }

where flux_expr is the product of the diffusion constant and the cross-sectional area between
adjacent compartments. Units of the flux_expr must be (micron4/ms), i.e. the diffusion constant
has units of (micron2/ms) and the cross-sectional area has units of (micron2). For cylindrical shell
compartments, the cross-sectional area is just the volume per unit length. If the states are arrays
then all elements are assumed to diffuse between corresponding volumes in adjacent segments
and the iteration variable must be specified as in

LONGITUDINAL_DIFFUSION index, flux_expr( index) {  state1 state2 . . . }

A COMPARTMENT statement is also required for the diffusing STATEs and the units must be
(micron2), i.e. (micron3/micron).

The compactness of LONGITUDINAL_DIFFUSION specification contrasts nicely with the
great deal of trouble imposed on the computational methods used to solve the equations. The
standard fixed time step implicit method, historically the default method used by NEURON, can
no longer find steady states with extremely large (e.g. 109 ms) steps since not every Jacobian
element for both flux and current with respect to voltage and concentration is presently
accurately computed. The CVODE method works well for these problems since it does not allow
dt  to grow beyond the point of numerical instability. In the presence of these occasional
limitations on numerical efficiency, it is satisfying that, as methods evolve to handle these
problems more robustly, the specification of the models does not change.

The third statement in this block is equivalent to a differential equation that describes the
contribution of transmembrane calcium current to Ca2+ in the outermost shell. The << signifies
an explicit flux. Because of the COMPARTMENT statement, the left hand side of the differential
equation is not d[Ca2+]0/dt but d(total Ca2+ in the outermost shell)/dt. This is consistent with the
right hand side of the equation, which is in units of mass per time.
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Next is the kinetic scheme for radial diffusion. The rate constants in this scheme equal the
product of DCa and the factor frat[]  for reasons that were explained above in Modeling
diffusion with kinetic schemes.

It may not be immediately clear why the rate constants in the kinetic scheme for Ca2+

buffering are scaled by the compartment volume dsqvol ; however, the reason will become
obvious when one recalls that the COMPARTMENT statement at the beginning of the KINETIC
block has converted the units of the dSTATE/dt on the left hand side of the equivalent differential
equations from concentration per time to mass per time. If the reaction rate constants were left
unchanged, the right hand side of the differential equations for buffering would have units of
concentration per time, which is inconsistent. Multiplying the rate constants by compartment
volume removes this inconsistency by changing the units of the right hand side to mass per time.

The last statement in the KINETIC  block updates the value of cai  from ca[0] . This is
necessary because intracellular [Ca2+] is known elsewhere in NEURON as cai , e.g. to other
mechanisms and to NEURON’s internal routine that computes ECa.

When developing a new mechanism or making substantive changes to an existing
mechanism, it is generally advisable to check for consistency of units with modlunit . Given the
dimensional complexity of this model, such testing is absolutely indispensable.

Usage

If this mechanism is inserted in a section, the concentrations of Ca2+ and the free and bound
buffer in all compartments will be available through hoc as ca_cadifus[] ,
Buffer_cadifus[] , and CaBuffer_cadifus[] . These STATEs will also be available for
plotting and analysis through the GUI.

The PARAMETERs DCa, k1buf , k2buf , and TotalBuffer  will also be available for
inspection and modification through both the graphical interface and hoc statements (with the
_cadifus  suffix). All PARAMETERs are GLOBALs by default, i.e. they will have the same values
in each location where the cadifus  mechanism has been inserted. Therefore in a sense it is
gratuitous to declare in the NEURON block that TotalBuffer  is GLOBAL. However, this
declaration does serve the purpose of underscoring the nature of this important variable which is
likely to be changed by the user.

In some cases it might be useful for one or more of the PARAMETERs to be RANGE variables.
For example, TotalBuffer  and even DCa or the buffer rate constants might not be uniform
throughout the cell. To make TotalBuffer  and DCa RANGE variables only requires replacing
the line

GLOBAL vrat, TotalBuffer

in the NEURON block with

GLOBAL vrat
RANGE TotalBuffer, DCa

The GLOBAL volume factors vrat[]  are available through hoc for inspection, but it is
inadvisable to change their values because they would likely be inconsistent with the frat[]
values and thereby cause errors in the simulation.
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All occurrences of this mechanism will have the same number of shells, regardless of the
physical diameter of the segments in which the mechanism has been inserted. With
Nannuli  = 4, the thickness of the outermost shell will be ≤ 1 µm in segments with diam  ≤
6 µm. If this spatial resolution is inadequate, or if the model has segments with larger diameters,
then Nannuli  may have to be increased. NMODL does not have dynamic arrays, so in order to
change the number of shells one must recompile the mechanism after assigning a new value to
Nannuli  by editing the NMODL source code.

Example 9: a calcium pump

This mechanism involves a calcium pump that is based on the reaction scheme outlined in the
description of the KINETIC  block of Example 7: kinetic scheme for a voltage-gated current.
It is a direct extension of the model of calcium diffusion with buffering in Example 8: calcium
diffusion with buffering , the principal difference being that a calcium pump is present in the
cell membrane. The following discussion focuses on the requisite changes in Listing 8, and the
operation and use of the resulting new mechanism. For all other details the reader should refer to
Example 8.

The NEURON block

Changes in the NEURON block are marked in bold. The first nontrivial difference from the
prior example is that this mechanism READs the value of cao , which is used in the pump reaction
scheme.

NEURON {
SUFFIX cdp
USEION ca READ cao, cai, ica WRITE cai, ica
RANGE ica_pmp
GLOBAL vrat, TotalBuffer, TotalPump

}

The mechanism WRITEs a pump current that is attributed to ica  so that its transmembrane
Ca2+ flux will be factored into NEURON’s calculations of [Ca2+] i. This current, which is a
RANGE variable known as ica_pmp_cdp  to the hoc interpreter, constitutes a net movement of
positive charge across the cell membrane, and it follows the usual sign convention (outward
current is “positive”). The pump current has a direct effect on membrane potential, which,
because of the rapid activation of the pump, is manifest by a distinct delay of the spike peak and
a slight increase of the postspike hyperpolarization. This mechanism could be made electrically
“silent” by having it WRITE an equal but opposite NONSPECIFIC current or perhaps a current
that involves some other ionic species, e.g. Na+, K+, or Cl–.

The variable TotalPump  is the total density of pump sites on the cell membrane, whether
free or occupied by Ca2+. Making it GLOBAL means that it is user adjustable, and that the pump is
assumed to have uniform density wherever the mechanism has been inserted. If local variation is
required, this should be a RANGE variable.
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The UNITS block

This mechanism includes the statement (mol) = (1)  because the density of pump sites will
be specified in units of (mol/cm2) . The term mole  cannot be used here because it is already
defined in the units database as 6.022169·1023.

Variable declaration blocks

The PARAMETER block

Five new statements have been added because this mechanism uses the rate constants of the
pump reactions and the density of pump sites on the cell membrane.

k1 = 1      (/mM-ms)
k2 = 0.005  (/ms)
k3 = 1      (/ms)
k4 = 0.005  (/mM-ms)
: to eliminate pump, set TotalPump to 0 in hoc
TotalPump = 1e-14  (mol/cm2)

These particular rate constant values were chosen to satisfy two criteria: the pump influx and
efflux should be equal at [Ca2+] = 50 nM, and the rate of transport should be slow enough to
allow a slight delay in accelerated transport following an action potential that included a voltage-
gated Ca2+ current. The density TotalPump  is sufficient for the pump to have a marked damping
effect on [Ca2+] i transients; lower values will reduce the ability of the pump to regulate [Ca2+] i.

The ASSIGNED block

These three additions have been made.

cao      (mM)
ica_pmp  (mA/cm2)
parea    (um)

This mechanism makes use of [Ca2+]o as a constant. The pump current and the surface area over
which the pump is distributed are also clearly necessary.

The CONSTANT block

Consistency of units requires explicit mention of an extracellular volume in the kinetic
scheme for the pump.

CONSTANT { volo = 1e10  (um2) }

The value used here is equivalent to 1 liter of extracellular space per micron length of the cell,
but the actual value is irrelevant to this mechanism because cao  will be treated as a constant.
Since the value of volo  is not important for this mechanism, there is no need for it to be
accessible through hoc commands or the GUI so it is not a PARAMETER. On the other hand, there
is a sense in which it is an integral part of the pump mechanism, which implies that it would not
be appropriate to make volo  be a LOCAL variable since LOCALs are intended for temporary
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storage of “throwaway” values. Finally, the value of volo  would never be changed in the course
of a simulation. Therefore volo  is declared in a CONSTANT block.

The STATE block

The densities of pump sites that are free or have bound Ca2+, respectively, are represented by
the two new STATEs

pump    (mol/cm2)
pumpca  (mol/cm2)

Equation definition blocks

The BREAKPOINT block

This block has one additional statement

BREAKPOINT {
SOLVE state METHOD sparse
ica = ica_pmp

}

The assignment ica = ica_pmp  is needed to ensure that the pump current is reckoned in
NEURON’s calculation of [Ca2+] i.

The INITIAL  block

The statement

parea = PI*diam

must be included to specify the area per unit length over which the pump is distributed.
If it is correct to assume that [Ca2+] i has been equal to cai0_ca_ion  (default = 50 nM) for a

long time, the initial levels of pump and pumpca can be set by using the steady-state formula

pump = TotalPump/(1 + (cai*k1/k2))
pumpca = TotalPump - pump

An alternative to this style of initialization would be to place

ica = 0
SOLVE state STEADYSTATE sparse

at the end of the INITIAL  block, where the ica = 0  statement is needed because the kinetic
scheme interprets transmembrane Ca2+ currents as a source of Ca2+ flux. This idiom can be
particularly convenient for mechanisms whose steady state solutions are difficult or impossible to
express in analytical form. As noted in the discussion of the INITIAL  block of the previous
example (Example 8: calcium diffusion with buffering ), this would require adding a
CONSERVE statement to the KINETIC  block to insure that the equations that describe the free and
bound buffer are independent.
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Both of these initializations make the explicit assumption that the net Ca2+ current generated
by other sources equals 0, so the net pump current following initialization will also be 0. If this
assumption is incorrect, as is almost certainly the case if one or more voltage-gated Ca2+ currents
are included in the model, then [Ca2+] i will start to change immediately when a simulation is
started. Most often this will not be what is desired. The proper initialization of a model that
contains mechanisms with complex interactions may involve performing an “initialization run”
and using SaveState  objects, as described in the discussion of the INITIAL  block of Example
4: a voltage-gated current.

The STATE block

Changes in this block are marked in bold. The new COMPARTMENT statements and the scale
factor (1e10)  are required for dimensional consistency in the pump scheme.

KINETIC state {
COMPARTMENT i, diam*diam*vrat[i] {ca CaBuffer Buffer}
COMPARTMENT (1e10)*parea {pump pumpca}
COMPARTMENT volo {cao}
LONGITUDINAL_DIFFUSION DCa {ca}

:pump
~ ca[0] + pump <-> pumpca  (k1*parea*(1e10), k2*parea*(1e10))
~ pumpca <-> pump + cao    (k3*parea*(1e10), k4*parea*(1e10))
CONSERVE pump + pumpca = TotalPump * parea * (1e10)
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea

: all currents except pump
~ ca[0] << (-(ica - ica_pmp )*PI*diam/(2*FARADAY))
FROM i=0 TO Nannuli-2 {

~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])
}
dsq = diam*diam
FROM i=0 TO Nannuli-1 {

dsqvol = dsq*vrat[i]
~ ca[i] + Buffer[i] <-> CaBuffer[i] (k1buf*dsqvol, k2buf*dsqvol)

}

cai = ca[0]
}

The pump reaction statements implement the scheme outlined in the description of the
KINETIC  block of Example 7: kinetic scheme for a voltage-gated current. Also as described
in that section, the CONSERVE statement ensures strict numerical conservation, which is helpful
for convergence and accuracy.

In the steady state, the net forward flux in the first and second reactions must be equal. Even
during physiologically-relevant transients, these fluxes track each other effectively
instantaneously. Therefore the transmembrane Ca2+ flux generated by the pump is taken to be the
net forward flux in the second reaction. This mechanism WRITEs ica  in order to affect [Ca2+] i.
The total transmembrane Ca2+ flux is the sum of the pump flux and the flux from all other
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sources. Thus to make sure that ica_pmp  is not counted twice, it is subtracted from total Ca2+

current ica  in the expression that relates Ca2+ current to Ca2+ flux.

Usage

The STATEs and PARAMETERs that are available through hoc and the GUI are directly
analogous to those of the cadifus  mechanism, but they will have the suffix _cdp  rather than
_cadifus . The additional pump variables pump_cdp , pumpca_cdp , ica_pmp_cdp , and
TotalPump_cdp  will also be available and are subject to similar concerns and constraints as
their counterparts in the diffusion reactions (see Usage in Example 7: kinetic scheme for a
voltage-gated current).

Models with discontinuities

Discontinuities in PARAMETERs

In the past, abrupt changes in PARAMETERs and ASSIGNED variables, such as the sudden
change in current injection during a current pulse, have been implicitly assumed to take place on
a time step boundary. This is inadequate with variable time step methods because it is unlikely
that a time step boundary will correspond to the onset and offset of the pulse. Worse, the time
step may be longer than the pulse itself, which may thus be entirely ignored.

For these reasons, a model description must explicitly notify NEURON, via the at_time()
function, of the times at which any discontinuities occur. The statement at_time( event_time)
guarantees that, during simulation with a variable time step method, as t  advances past
event_time, the integrator will reduce the step size so that it completes at t  = event_time – ε,
where ε ~ 10–9 ms. The next step resets the integrator to first order, thereby discarding any
previous solution history, and immediately returns after computing all the dy dti  at t  =

event_time + ε. This is how the built-in current clamp model IClamp  notifies NEURON of the
time of onset of the pulse and its offset (see the BREAKPOINT block of Example 3: an
intracellular stimulating electrode). Note that at_time()  returns a value of 1 (“true”) only
during the “infinitesimal” step that ends at t  = event_time + ε; otherwise it returns 0.

During a variable time step simulation, a missing at_time()  call may cause one of two
symptoms. If a PARAMETER changes but returns to its original value within the same interval, the
pulse may be entirely missed. More often a single discontinuity will take place within a time step
interval, in which case what seems like a binary search will start for the location of the
discontinuity in order to satisfy the error tolerance on the step; this, of course, is very inefficient.

Time dependent PARAMETER changes at the hoc interpreter level are highly discouraged
because they cannot currently be properly computed in the context of variable time steps. For
instance, with fixed time steps it was convenient to change PARAMETERs prior to fadvance()
calls, as in

proc advance() {
IClamp[0].amp = imax*sin(w*t)
fadvance()

}
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With variable time step methods, all time-dependent changes must be described explicitly in a
model, in this case with

BREAKPOINT { i = imax*sin(w*t) }

A future version of NEURON may provide a facility to specify time dependent and
discontinuous PARAMETER changes safely at the hoc level in the context of variable time step
methods.

Discontinuities in STATEs

Some kinds of synaptic models process an event as a discontinuity in one or more of their
STATE variables. For example, a synapse whose conductance follows the time course of an alpha
function (for more detail about the alpha function itself see Rall (1977) and Jack et al. (1983))
can be implemented as a kinetic scheme in the two state model

KINETIC state {
~ a <-> g (k, 0)
~ g -> (k)

}

where a discrete synaptic event is handled as an abrupt increase of STATE a. This formulation
has the attractive property that it can handle multiple streams of events with different weights, so
that g will be the sum of the individual alpha functions with their appropriate onsets.

However, because of the special nature of states in variable time step ODE solvers, it is
necessary not only to notify NEURON about the time of the discontinuity with the
at_time(onset)  call, but also to notify NEURON about any discontinuities in STATEs. If
onset  is the time of the synaptic event and gmax is the desired maximum conductance change,
this would be accomplished by including a state_discontinuity()  call in the BREAKPOINT
block as follows:

BREAKPOINT {
if (at_time(onset)) {

: scale factor exp(1) = 2.718... ensures
: that peak conductance will be gmax
state_discontinuity(a, a + gmax*exp(1))

}
SOLVE state METHOD sparse
i = g*(v - e)

}

The first argument to state_discontinuity()  will be assigned the value of its second
argument just once for any time step. This is important, since for several integration methods
BREAKPOINT assignment statements are often executed twice to calculate the di/dv terms of the
Jacobian matrix.

Although this synaptic model works well with deterministic stimulus trains, it is difficult for
the user to supply the administrative hoc code for managing the onset  and gmax variables to
take advantage of the promise of “multiple streams of events with different weights.” The most
important problem is how to save events that have significant delay between their generation and
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their handling at time onset . As is, an event can be passed to this model by assigning values to
onset  and gmax only after the previous onset event has been handled.

Discussion of the details of how NEURON now treats streams of synaptic events with
arbitrary delays and weights is beyond the scope of this paper. Let it suffice that from the local
view of the postsynaptic model, the state discontinuity should no longer be handled in the
BREAKPOINT block, and the above synaptic model is more properly written in the form

BREAKPOINT {
SOLVE state METHOD sparse
i = g*(v - e)

}

NET_RECEIVE(weight (microsiemens)) {
state_discontinuity(a, a + weight*exp(1))

}

in which event distribution is handled internally from a specification of network connectivity (see
next section).

General comments about synaptic models

The examples so far have been of mechanisms that are “local” in the sense that an instance of
a mechanism at a particular location on the cell depends only on STATEs and PARAMETERs of the
model at that location. Of course they normally depend on voltage and ionic variables as well,
but these also are at that location and automatically available to the model. Synaptic models have
an essential distinguishing characteristic that sets them apart: in order to properly compute their
contribution to membrane current at the postsynaptic site, they require information from another
place, e.g. presynaptic voltage. Models that contain LONGITUDINAL_DIFFUSION are perhaps
also an exception, but their dependence on adjacent compartment ion concentration is handled
automatically by the translator.

In the past, model descriptions could only use POINTER variables to obtain their presynaptic
information. A POINTER in NMODL holds a reference to another variable; the specific reference
is defined by a hoc statement such as

setpointer postcell.synapse.vpre, precell.axon.v(1)

in which vpre  is a POINTER, declared in the indicated POINT_PROCESS synapse instance,
which references the value of a specific membrane voltage, in this case at the distal end of the
presynaptic axon. Gap junctions or ephaptic synapses can be handled by a pair of
POINT_PROCESSes on the two sides of the junction that point to each other’s voltage, as in

section1 gap1 = new Gap(x1)
section2 gap2 = new Gap(x2)
setpointer gap1.vpre, section2.v(x2)
setpointer gap2.vpre, section1.v(x1)
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This kind of detailed piecing together of individual components is acceptable for models with
only a few synapses, but larger network models have required considerable administrative effort
from users to 1) create mechanisms that handle synaptic delay, 2) exploit very great simulation
efficiencies available with simplified models of synapses, and 3) maintain information about the
connectivity of the network.

The experience of NEURON users — especially Alain Destexhe and William Lytton — in
creating special models and procedures for managing network simulations has been incorporated
in a new built-in network connection (NetCon ) class, whose instances manage the delivery of
presynaptic threshold events to postsynaptic POINT_PROCESSes. It is very important to note that
the NetCon  class works for all NEURON integrators, including a local variable time step method
in which each cell is integrated with a time step appropriate to the state changes occurring in that
cell. With this event delivery system, model descriptions of synapses never need to queue events,
and they do not have to make heroic efforts to work properly with variable time step methods.
These features offer enormous convenience to the user.

NetCon  connects a presynaptic variable such as voltage to a synapse with arbitrary
(individually specified on a per NetCon  instance) delay and weight. If the presynaptic variable
passes threshold at time t , a special NET_RECEIVE procedure in the postsynaptic
POINT_PROCESS is called at time t + delay . The only constraint on delay  is that it be
nonnegative. Events always arrive at the postsynaptic object at the interval delay  after the time
they were generated, and there is no loss of events under any circumstances.

This new class also reduces the computational burden of network simulations, because the
event delivery system for NetCon  objects supports unlimited fan-in and fan-out (convergence
and divergence). That is, many NetCon  objects can be connected to the same postsynaptic
POINT_PROCESS (fan-in). This yields large efficiency improvements because a single set of
equations for synaptic conductance change can be shared by many streams of inputs (one input
stream per connecting NetCon  instance). Likewise, many NetCon  objects can be connected to
the same presynaptic variable (fan-out), thus providing additional efficiency improvement since
the presynaptic variable is checked only once per time step and, when it crosses threshold in the
positive direction, events are generated for each connecting NetCon  object. The next example
shows how a NetCon  object might be used to establish the connection between two model
neurons.

Example 10: synapse with exponential decay

The simplest useful synapse consists of an abrupt change in conductance, triggered by arrival
of an event, which then decays with a single time constant. We imagine not only that the
conductance summates when events arrive from different places, but that a single stream of
events will also summate. The following model handles both these situations by defining a single
conductance state g which is governed by a differential equation with the solution

g t g t e
t t� �  ! " #

= −
0

0 τ  where g t0
$ %

 is the conductance at the time of the most recent event.
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: expsyn.mod

NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, i
NONSPECIFIC_CURRENT i

}

PARAMETER {
tau = 0.1  (ms)
e   = 0    (millivolt)

}

ASSIGNED {
v  (millivolt)
i  (nanoamp)

}

STATE { g (microsiemens) }

INITIAL { g = 0 }

BREAKPOINT {
SOLVE state METHOD cnexp
i = g*(v - e)

}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(weight (microsiemens)) {
state_discontinuity(g, g + weight)

}

Listing 9. expsyn.mod

The NET_RECEIVE block

The new feature in this model is the NET_RECEIVE block, which is called by the NetCon
event delivery system when an event arrives at this postsynaptic point process. In this case the
value of the weight is specified by the particular NetCon  object delivering the event, and this
value increments the conductance state.

As noted above in Discontinuities in STATEs, state_discontinuity()  must be called if
discontinuous STATE changes are to work properly with the variable time step methods. The first
argument of state_discontinuity()  is interpreted as a reference to the STATE, and the
second argument is an expression for its new value. If the variable to be changed is not a STATE
variable, then it is safe to specify its new value with an ordinary assignment statement (see
Example 12: Use-dependent synaptic plasticity below). Just before entry to NET_RECEIVE
with an event to be delivered at time t , all STATEs, v , and values assigned in the BREAKPOINT
block are consistent at time t .
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Usage

Suppose we wanted to set up an ExpSyn
synaptic connection between the two cells
portrayed in Fig.10. This could be done with the
following hoc code, which also illustrates the use
of a List  of NetCon  objects as a means for
keeping track of the synaptic connections in a network.

// the network will be represented
//   by a list of NetCon objects
objref ncl
ncl = new List()

// make an ExpSyn point process called syn
//   that is located on cell[5]
//   just to one side of the midpoint of dend[3]
objref syn
cell[5].dend[3] syn = new ExpSyn(0.3)

// cell[20].axon.v(1) is voltage at the presynaptic site
// connect the presynaptic cell to the ExpSyn instance syn
// via a new NetCon object
// and add the NetCon object to the list ncl
cell[20].axon ncl.append(new NetCon(&v(1), \

syn, threshold, delay, weight)

Figure 11 shows graphs saved from a simulation
of two input streams converging onto postsynaptic
cell. The top graph indicates the presynaptic firing
times (traces labeled precell[0]  and
precell[1] ). The conductance of the ExpSyn
mechanism and the membrane potential of the
postsynaptic cell are shown in the middle and
bottom graphs. For this example, the decay time
constant for the synaptic conductance has been
arbitrarily set to 3 ms. Temporal summation is
evident in the synaptic conductance and postsynaptic
membrane potential for inputs within an individual
stream and between inputs on multiple streams.

Figure 10

s

Figure 11
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Example 11: alpha function synapse

It is a simple matter to extend ExpSyn  to implement an alpha function synapse by replacing
the differential equation with the two state kinetic scheme.

STATE { a (microsiemens) g (microsiemens) }
KINETIC state {

~ a <-> g (1/tau, 0)
~ g -> (1/tau)

}

and changing the discontinuity statement to

state_discontinuity(a, a + weight*exp(1))

The factor exp(1)  = e is included so that an isolated event produces a peak conductance of
magnitude weight , which occurs at time tau  after the event. Since this mechanism involves a
KINETIC  block instead of a DERIVATIVE block, the integration method specified by the SOLVE
statement must be changed from cnexp  to sparse .

The extra computational complexity of using a kinetic scheme is offset by the fact that, no
matter how many NetCon  streams connect to this model, the computation time required to
integrate STATE g remains constant. The only extra time is the potentially greater number of calls
to the NET_RECEIVE block, which is called only when events are to be delivered. This illustrates
a very useful tactic which will reappear in subsequent models: always move as much
computational complexity as possible from temporal integration blocks (DERIVATIVE or
KINETIC  blocks) to the NET_RECEIVE block. The potential benefits are very large, since
BREAKPOINT and SOLVE blocks are executed — sometimes repeatedly — at each time step,
whereas statements in the NET_RECEIVE block are executed only once per delivered event.
Indeed, with NEURON's variable time step methods it is possible to carry out what are
essentially discrete event simulations, in which dt  is always the interval between events. Since
most steps reduce to an interpolation step followed by a single ODE function evaluation, this
reduces the time step integration overhead to a fraction of a normal single integration step per
event.

Some increase of efficiency can be gained by recasting the kinetic scheme as two linear
differential equations

DERIVATIVE state {
a' = -a/tau1
b' = -b/tau
g = b - a

}

which are solved efficiently by the cnexp  method. As tau1  approaches tau  from below, g
approaches an alpha function (although the factor by which weight  must be multiplied
approaches infinity). Also, there are now two state discontinuities in the NET_RECEIVE block

state_discontinuity(a, a + weight*factor)
state_discontinuity(b, b + weight*factor)
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Example 12: Use-dependent synaptic plasticity

Here the alpha function synapse is extended to implement a form of use-dependent synaptic
plasticity. Each presynaptic event initiates two distinct processes: direct activation of ligand-
gated channels, which causes a transient conductance change, and activation of a mechanism that
in turn can have a modulatory effect on the conductance change produced by successive synaptic
activations. Here we presume that synaptic strength is modulated by the postsynaptic increase of
a second messenger, which we will call “G protein” for illustrative purposes. We must point out
that this example is entirely hypothetical, and that it is quite different from models described by
others (Destexhe and Sejnowski 1995) in which the G protein itself gates the ionic channels.

In this mechanism it is essential to distinguish each stream into the generalized synapse, since
each stream has to maintain its own [G] (concentration of activated G protein). That is, streams
are independent of each other in terms of the effect on [G], but their effects on synaptic
conductance show linear superposition.

: gsyn.mod

NEURON {
POINT_PROCESS GSyn
RANGE tau1, tau2, e, i
RANGE Gtau1, Gtau2, Ginc
NONSPECIFIC_CURRENT i
RANGE g

}

UNITS {
(nA)   = (nanoamp)
(mV)   = (millivolt)
(umho) = (micromho)

}

PARAMETER {
tau1   = 1  (ms)
tau2   = 1.05    (ms)
Gtau1  = 20   (ms)
Gtau2  = 21   (m s)
Ginc   = 1
e      = 0    (mV)

}

ASSIGNED {
v  (mV)
i  (nA)
g  (umho)
factor
Gfactor

}
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STATE {
A  (umho)
B  (umho)

}

INITIAL {
LOCAL tp
A = 0
B = 0
tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
factor = -exp(-tp/tau1) + exp(-tp/tau2)
factor = 1/factor
tp = (Gtau1*Gtau2)/(Gtau2 - Gtau1) * log(Gtau2/Gtau1)
Gfactor = -exp(-tp/Gtau1) + exp(-tp/Gtau2)
Gfactor = 1/Gfactor

}

BREAKPOINT {
SOLVE state METHOD cnexp
g = B - A
i = g*(v - e)

}

DERIVATIVE state {
A' = -A/tau1
B' = -B/tau2

}

NET_RECEIVE(weight (umho), w, G1, G2, t0 (ms)) {
G1 = G1*exp(-(t-t0)/Gtau1)
G2 = G2*exp(-(t-t0)/Gtau2)
G1 = G1 + Ginc*Gfactor
G2 = G2 + Ginc*Gfactor
t0 = t

w = weight*(1 + G2 - G1)
state_discontinuity(A, A + w*factor)
state_discontinuity(B, B + w*factor)

}

Listing 10. gsyn.mod

The conductance of the ligand-gated ion channel uses the differential equation approximation
for an alpha function synapse. The peak synaptic conductance depends on the value of [G] at the
moment of synaptic activation. A similar, albeit much slower, alpha function approximation
describes the time course of [G]. These processes peak approximately tau1  and Gtau1  after
delivery of an event, respectively.

The peak synaptic conductance of an active NetCon  is specified in the NET_RECEIVE block,
where w = weight*(1 + G2 - G1)  describes how the effective weight of the synapse is
modified by [G]. Even though conductance is integrated, [G] is needed only at discrete event
times so it can be computed analytically from the elapsed time since the prior synaptic activation.
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The INITIAL  block performs the tedious task of setting up the factors which are needed to make
the peak changes equal to the values of w and Ginc .

Note that G1 and G2 do not need a state_discontinuity()  to change them because they
are not STATEs in this mechanism. They are not even variables in this mechanism, but instead are
“owned” by the particular NetCon  instance that delivered the event.

A NetCon  object instance keeps an array of size equal to the number of arguments to
NET_RECEIVE, and the arguments to NET_RECEIVE are really references to the elements of this
array. The fact that the arguments are “call by reference,” instead of the normal “call by value,” is
what allows this model to work: it allows assignment statements in gsyn.mod  to change the
values of variables that belong to the NetCon  object. Since there is a separate array for each
NetCon  object that connects to this model, [G] can be different for different connections.
However the individual NetCon  objects all contribute linearly to the synaptic conductance.

Example 13: saturating synapses

Several authors (e.g. Destexhe et al. (1994a), Lytton (1996)) have found it useful to
approximate a wide range of synaptic behavior by explicitly parameterizing the conductance
change as a single time constant onset with specific duration (Cdur, interpreted as the duration of
a transmitter pulse) followed by a separate time constant offset. The conductance changes elicited
by separate streams summate, whereas repetitive impulses on one stream produce a saturating
conductance change (steady state for a long onset time). We resolve the ambiguity of what to do
when multiple spikes arrive on a single stream during the Cdur onset of an earlier spike (i.e.
ignore, concatenate Cdur to make the transmitter pulse longer without increasing its
concentration, or summate the transmitter) by choosing concatenation. Summation of transmitter
is outside the scope of the Destexhe/Lytton model since that formulation demands identical onset
time constants for all conductance changes and the onset time constant is proportional to
transmitter concentration.

Although the idea of saturation can be captured with a model of the form used in the previous
example, the separate onset/offset formulation requires keeping track of how much “material” in
each stream is in the offset or onset state. The wrinkle here is that when an event arrives at time t
to start an onset, another event must be generated to occur at time t+Cdur to start turning it off.
To complicate matters further, other spikes on the same input line (same NetCon ) may arrive
before t+Cdur, which means that the offset event at t+Cdur should be ignored. The only time an
offset event takes effect is if no other spikes occurred in the previous Cdur interval.

The NMODL implementation for this mechanism is given in Listing 11.

: ampa.mod

NEURON {
POINT_PROCESS AMPA_S
RANGE R, g
NONSPECIFIC_CURRENT i
GLOBAL Cdur, Alpha, Beta, Erev, Rinf, Rtau

}
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UNITS {
(nA)   = (nanoamp)
(mV)   = (millivolt)
(umho) = (micromho)
(mM)   = (milli/liter)

}

PARAMETER {
Cdur  = 0.3   (ms)  : transmitter duration (rising phase)
Alpha = 0.94  (/ms) : forward (binding) rate
Beta   = 0.18  (/ms) : backward (dissociation) rate
Erev  = 0     (mV)  : equilibrium potential

}

ASSIGNED {
v     (mV)   : postsynaptic voltage
i     (nA)   : current = g*(v - Erev)
g     (umho) : conductance
Rinf         : steady state channels open
Rtau  (ms)   : time constant of channel binding
synon

}

STATE { Ron Roff }  : initialized to 0 by default

INITIAL {
Rinf = Alpha / (Alpha + Beta)
Rtau = 1 / (Alpha + Beta)
synon = 0

}

BREAKPOINT {
SOLVE release METHOD cnexp
g = (Ron + Roff)*1(umho)
i = g*(v - Erev)

}

DERIVATIVE release {
Ron' = (synon*Rinf - Ron)/Rtau
Roff' = -Beta*Roff

}
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: on initialization, all arguments after the first one
:   are set to 0
NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {

: flag is an implicit argument of NET_RECEIVE, normally 0
if (flag == 0) {

: a spike, so turn on if not already in a Cdur pulse
nspike = nspike + 1
if (!on) {

r0 = r0*exp(-Beta*(t - t0))
t0 = t
on = 1
synon = synon + weight
state_discontinuity(Ron, Ron + r0)
state_disc ontinuity(Roff, Roff - r0)

}
: come again in Cdur with flag = current value of nspike
net_send(Cdur, nspike)

}
if (flag == nspike) {

: if this associated with last spike then turn off
r0 = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)
t0 = t
synon = synon - weight
state_discontinuity(Ron, Ron - r0)
state_discontinuity(Roff, Roff + r0)
on = 0

}
}

Listing 11. ampa.mod

Details of saturating mechanisms per se are covered by Destexhe et al. (1994a; 1994b) and
Lytton (1996). Here we focus on how the NET_RECEIVE block is used to manage multiple input
streams. An onset event, generated by the system when the connecting NetCon ’s source passed
threshold t - delay  ago, always has an implicit argument called flag  which is set to 0 and is
call by value as opposed to the explicit arguments, which are “call by reference.” The nspike
variable counts the spikes that have taken place on the individual NetCon  lines. A spike onset
event (flag  = 0) results in a net_send()  call, which will generate an event with delay given by
the first argument and flag value given by the second argument. All the explicit arguments will
have the value of this particular NetCon , and therefore flag  will only match nspike  when
there is no intervening spike event (on this NetCon  line).

DISCUSSION

The model description framework has proven to be a useful, efficient, and flexible way to
implement computational models of biophysical mechanisms. The leverage that NMODL
provides to the user is amplified by its platform-independence, since it runs in the MacOS,
MSWindows, and UNIX/Linux environments. Another important factor is consistency of high-
level syntax, which allows it to incorporate advances in numerical methods in a way that is
transparent to the user.
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NMODL continues to undergo revision and improvement in response to the evolving needs
of computational neuroscience, particularly in the domain of empirically-based modeling. One
recent example of the extension of NMODL to encompass new kinds of mechanisms is
longitudinal diffusion. Another is kinetic schemes in a form that can be interpreted as Markov
processes (Colquhoun and Hawkes 1981), i.e. linear schemes, which are now translated into
single channel models. By removing arbitrary limits related to programming complexity, such
advances give NEURON the ability to accommodate insights derived from new experimental
findings, and enable modeling to keep pace with the broad arena of “wet-lab” neuroscience.
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INDEX

' (apostrophe)   See DERIVATIVE block: ' (apostrophe)

: (inline comment)   5

<< (explicit flux)   See KINETIC block: <<

<-> (reaction indicator)   See KINETIC block: <->

-> (sink reaction indicator)   See KINETIC block: ->

~ (tilde)   See KINETIC block: ~

abrupt changes   See discontinuities

absolute tolerance   See variable time step: tolerance

accuracy
first-order   18, 33
second-order   18, 35
variable order   17. See CVODE, variable time step

adaptive time step   See variable time step

alpha function synapse   See Example 11: alpha function synapse

ampa.mod   See Example 13: saturating synapses

array
of arguments for NetCon (network connection) class   56

arrays
in NMODL are not dynamic   39, 43
index starts at 0   39
STATE variable   34

ASSIGNED block   7

ASSIGNED variable   7
abrupt change or discontinuity   See discontinuities: in ASSIGNED or PARAMETER

variables
GLOBAL

local value   23, 24
spatial variation   23, 24

GLOBAL vs. RANGE   8, 22, 23, 24
visibility at the hoc level   8, 12
when to use for equilibrium potential   15

at_time()   See variable time step: at_time()

automatically-created ionic mechanism   See NEURON block: USEION: automatically-created
ionic mechanism
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b_flux   See KINETIC block: b_flux

backward flux   See KINETIC block: b_flux

balance
charge   6
mass   3, 6

kinetic schemes   28

block
ASSIGNED   See ASSIGNED block
BREAKPOINT   See BREAKPOINT block
COMMENT   5
CONSTANT   45
DERIVATIVE   See DERIVATIVE block
equation definition   4. See BREAKPOINT, DERIVATIVE, FUNCTION, INITIAL,

KINETIC, PROCEDURE
LOCAL variable   19

FUNCTION   See FUNCTION block
INITIAL   See INITIAL block
KINETIC   See KINETIC block
named   4, 5
NEURON   See NEURON block
PARAMETER   See PARAMETER block
PROCEDURE   See PROCEDURE block
variable declaration   4, 7. See ASSIGNED, PARAMETER, STATE
VERBATIM   5

BREAKPOINT block   16
abrupt change or discontinuity

of a STATE variable   48, 51, 53
of an ASSIGNED or PARAMETER variable   See variable time step: at_time()

and computations that must be performed only once per time step   16, 48
and counts, flags, and random variables   16
and PROCEDUREs   16
and rate functions   16
at_time()   See variable time step: at_time()
currents   16
main computation block   8
METHOD   See STATE variable, BREAKPOINT block: SOLVE
SOLVE   16, 18. See STATE variable

cnexp   18, 53
derivimplicit   18
is not a function call   16
sparse   33, 53

state_discontinuity()   48, 51, 53



Hines and Carnevale: Expanding NEURON with NMODL

Revised 4/6/2000 Page 64

C code
embedding   See VERBATIM block

cadif.mod   See Example 8: calcium diffusion with buffering

cagk.mod   See Example 5: a calcium-activated voltage-gated current

calcium pump   See Example 9: a calcium pump

calcium-activated current   See Example 5: a calcium-activated voltage-gated current

celsius   23

charge balance   6

cnexp   See DERIVATIVE block, BREAKPOINT block: SOLVE: cnexp

comment
block   5
inline   5

COMMENT block   5
ENDCOMMENT   5

conceptual leverage   3, 58

conservation   28, 32, 33

constant   See units
vs. PARAMETER or LOCAL variable   44

CONSTANT block   45

conversion factor   See units: conversion factor

current clamp   See Example 3: an intracellular stimulating electrode

cvode   26, 41. See variable time step. See CVODE, variable time step

DEFINE   39

density mechanisms   4, 13

DERIVATIVE block   18
' (apostrophe)   18

derivimplicit   See DERIVATIVE block, BREAKPOINT block: SOLVE: derivimplicit

diffusion with buffering   See Example 8: calcium diffusion with buffering

Dimensional consistency   See units: consistency

discontinuities   See variable time step: discontinuities
in ASSIGNED or PARAMETER variables   47
in NET_RECEIVE block via assignment statement   51, 56

discrete event simulations   53

Distributed Mechanism Manager, Viewer, and Inserter   See graphical user interface

distributed mechanisms   See density mechanisms

dt
analytic expressions involving   6
use in NMODL   6, 8
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e
electronic charge vs. scale factor   23

electrode
intracellular stimulating   See Example 3: an intracellular stimulating electrode
shunting effect of sharp microelectrode   See Example 2: a localized shunt

ephapse   49

equilibrium potential
ASSIGNED vs. PARAMETER variable   15

Euler method   33

events   12, 17
and time step boundaries   12, 47. See fixed time step, variable time step
event delivery system   50, 51, 53, 58. See NetCon (network connection) class, synaptic

models
STATE variable discontinuities   48

Example
1: a passive “leak” current   4
10: synapse with exponential decay   50
11: alpha function synapse   53
12: use-dependent synaptic plasticity   54
13: saturating synapses   56
2: a localized shunt   9
3: an intracellular stimulating electrode   11
4: a voltage-gated current   13
5: a calcium-activated voltage-gated current   20
6: extracellular potassium accumulation   24
7: kinetic scheme for a voltage-gated current   30
8: calcium diffusion with buffering   35
9: a calcium pump   43

explicit integration methods   33

expsyn.mod   See Example 10: synapse with exponential decay

extensive variable   36

extracellular mechanism   12

extracellular potassium accumulation   See Example 6: extracellular potassium accumulation

f_flux   See KINETIC block: f_flux

fadvance()   27, 33, 47

fcurrent()   17

F-H space   See Example 6: extracellular potassium accumulation
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finitialize()   13, 17. See INITIAL block
and ionic concentrations   27

first-order accuracy   See accuracy

fixed time step   12, 18, 47. See variable time step

flux   See KINETIC block: b_flux, f_flux

forall   24

forward flux   See KINETIC block: f_flux

Frankenhaeuser-Hodgkin space   See Example 6: extracellular potassium accumulation

FROM . . . TO . . . (loop statement)   40

function   See FUNCTION block
name   18
name conflict   18
name suffix   18. See NEURON block: SUFFIX
referencing a RANGE variable   19

FUNCTION block   18
setdata_   19
units   19
visibility at the hoc level   18

FUNCTION_TABLE   33, 34. See KINETIC block

gap junction   49

GENESIS   3, 6

GLOBAL   See NEURON block: GLOBAL, and related topics under ASSIGNED and
PARAMETER variables

GMODL   6

graphical user interface (GUI)   7, 9, 10, 11, 13
Plot what?   20, 24

gsyn.mod   See Example 12: use-dependent synaptic plasticity

HH-style ionic currents   18

high-level specification   3, 18, 58
kinetic scheme   30

Hodgkin-Huxley delayed rectifier   See Example 4: a voltage-gated current

IClamp   See Example 3: an intracellular stimulating electrode

iclamp1.mod   See Example 3: an intracellular stimulating electrode
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INITIAL block   13, 17, 56
and CONSERVE statements in KINETIC block   33
SOLVE

STEADYSTATE sparse   33

initialization   See INITIAL block, finitialize()
from t < 0   17
ion_style() and   27
ionic concentration   27

default values   27
of a kinetic scheme   33
of v on a compartment-by-compartment basis   17
SaveState / RestoreState   17, 46
strategies   17

explicit algebraic assignment vs. numeric solution of a kinetic scheme   40, 45
immobile buffer   40
initialization run   17, 46
ionic concentration   27
nonuniform initial ionic concentration   27

integration methods   See BREAKPOINT block: SOLVE

intensive variable   36

intracellular stimulating electrode   See Example 3: an intracellular stimulating electrode

ion_style()   See initialization: strategies: nonuniform initial ionic concentration

ionic concentration
as a STATE variable   26

ionic diffusion
modeling as kinetic scheme   28

ionic mechanism
automatically-created   See NEURON block: USEION: automatically-created ionic

mechanism

Jacobian   18, 29, 33, 48

k3st.mod   See Example 7: kinetic scheme for a voltage-gated current

kd.mod   See Example 4: a voltage-gated current

kext.mod   See Example 6: extracellular potassium accumulation

keywords   5
“e” as electronic charge vs. scale factor   23
area   6
ASSIGNED   See ASSIGNED block, ASSIGNED variable
at_time()   See variable time step: at_time()
b_flux   See KINETIC block: b_flux
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BREAKPOINT   See BREAKPOINT block
celsius   6
cnexp   See DERIVATIVE block, BREAKPOINT block: SOLVE: cnexp
COMMENT   5
COMPARTMENT   See KINETIC block: COMPARTMENT
CONSERVE   See KINETIC block: CONSERVE
CONSTANT   See CONSTANT block
cvode   See CVODE, variable time step
DEFINE   39
DERIVATIVE   See DERIVATIVE block
derivimplicit   See DERIVATIVE block, BREAKPOINT block: SOLVE: derivimplicit
diam   6
dt   See dt
ELECTRODE_CURRENT   See NEURON block: ELECTRODE_CURRENT
ENDCOMMENT   5
ENDVERBATIM   5
extracellular   12
f_flux   See KINETIC block: f_flux
fadvance()   See fadvance()
fcurrent()   See fcurrent()
forall   See forall
FROM . . . TO . . .   40
FUNCTION   See FUNCTION block
FUNCTION_TABLE   See FUNCTION_TABLE, KINETIC block
GLOBAL   See NEURON block: GLOBAL, and related topics under ASSIGNED and

PARAMETER variables
INITIAL   See INITIAL block
ion_style()   See initialization: ion_style() and
KINETIC   See KINETIC block
LINEAR   See LINEAR block
LOCAL   See LOCAL variable
LONGITUDINAL_DIFFUSION   See KINETIC block:LONGITUDINAL_DIFFUSION
METHOD   See BREAKPOINT block: SOLVE
net_send()   See NetCon (network connection) class:net_send()
NetCon   See NetCon (network connection) class
NEURON   See NEURON block
NONLINEAR   See NONLINEAR block
NONSPECIFIC_CURRENT   See NEURON block: NONSPECIFIC_CURRENT
PARAMETER   See PARAMETER block, PARAMETER variable
POINT_PROCESS   See NEURON block: POINT_PROCESS
POINTER   See POINTER variable
PROCEDURE   See PROCEDURE block
RANGE   See NEURON block: RANGE
re_init()   See variable time step: cvode.re_init()
READ   See NEURON block: USEION: READ
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RestoreState   See initialization: SaveState / RestoreState
SaveState   See initialization: SaveState / RestoreState
setdata_   See FUNCTION block: setdata_
setpointer   See POINTER variable: setpointer
SOLVE   See BREAKPOINT block: SOLVE, INITIAL block: SOLVE: STEADYSTATE

sparse
STATE   See STATE block, STATE variable
STEADYSTATE   See INITIAL block: SOLVE: STEADYSTATE sparse, initialization
SUFFIX   See NEURON block: SUFFIX
t   See t
table_   See FUNCTION_TABLE, KINETIC block
UNITS   See UNITS block
USEION   See NEURON block: USEION
v   6
v_init   See v_init
VERBATIM   5
vext   12
WRITE   See NEURON block: USEION: WRITE

KINETIC block   53
<< (explicit flux)   41
<-> (reaction indicator)   28
-> (sink reaction indicator)   48, 53
~ (tilde)   28
and FUNCTION_TABLE   33. See FUNCTION_TABLE
b_flux   29
COMPARTMENT   34, 36, 41
CONSERVE   33, 46

required for initialization   33
f_flux   29
LONGITUDINAL_DIFFUSION   41
products   28
radial diffusion   42
rates   28

voltage-sensitive   29
reactants   28
reaction statement   28

kinetic schemes   28

leak.mod   See Example 1: a passive “leak” current

LINEAR block   16

linear ODE   18

List
of NetCon objects   52
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Listing
1. leak.mod   See Example 1: a passive “leak” current
10. gsyn.mod   See Example 12: use-dependent synaptic plasticity
11. ampa.mod   See Example 13: saturating synapses
2. shunt.mod   See Example 2: a localized shunt
3. iclamp1.mod   See Example 3: an intracellular stimulating electrode
4. kd.mod   See Example 4: a voltage-gated current
5. cagk.mod   See Example 5: a calcium-activated voltage-gated current
6. kext.mod   See Example 6: extracellular potassium accumulation
7. k3st.mod   See Example 7: kinetic scheme for a voltage-gated current
8. cadif.mod   See Example 8: calcium diffusion with buffering
9. expsyn.mod   See Example 10: synapse with exponential decay

local error
with variable time step   18, 39

LOCAL variable   19
declared inside an equation block

scope   19
declared outside an equation block

initial value   40
scope   40

declared outside an equation definition block
scope   40

declared outside equation block
vs. GLOBAL   40

vs. CONSTANT   44

LONGITUDINAL_DIFFUSION   See KINETIC block:LONGITUDINAL_DIFFUSION

loop statement (FROM . . . TO . . . )   40

Markov processes   28

mass balance   6. See balance: mass
kinetic schemes   28

microelectrode
intracellular stimulating   See Example 3: an intracellular stimulating electrode
shunting effect   See Example 2: a localized shunt

mod file   3
changing PARAMETER variables in   7

MOdel Description Language   See MODL

MODL   4
vs. NMODL   4, 6

modlunit   See units: checking

mole
vs. mol   44
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National Biomedical Simulation Resource project   4

NET_RECEIVE block   49, 53, 55
abrupt change or discontinuity via assignment statement   51, 56
arguments   56
implicit argument called flag   58
input streams   58
state_discontinuity()   51, 53

net_send()   See NetCon (network connection) class:net_send()

NetCon (network connection) class   50
argument array   56
event delivery system   51, 58
input streams   53, 54, 56
List of NetCon objects   52
NET_RECEIVE   50
NET_RECEIVE block   51
net_send()   58
synaptic delay and weight   50

network models   50. See NetCon (network connection) class
fan-in and fan-out   50
increasing computational efficiency   53
using a List of NetCon objects to keep track of synaptic connections   52

NEURON block   6
ELECTRODE_CURRENT   12
GLOBAL   6, 38

vs. LOCAL variable declared outside an equation block   40
GLOBAL vs. RANGE   10
NONSPECIFIC_CURRENT   6
POINT_PROCESS   10
RANGE   6, 12
SUFFIX   6
USEION   7, 15, 22

automatically-created ionic mechanism   25
default initial ionic concentration   27
nonuniform initial ionic concentration   27
READ ex (reading an equilibrium potential)   15
READ ix (reading an ionic current)   26, 38
READ x (reading an ionic concentration)   38, 43
WRITE ix (writing an ionic current)   15, 43, 46
WRITE x (writing an ionic concentration)   26, 27, 38

Newton iteration   33
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NMODL   See NMODL: translator
translator   3, 6, 29, 34, 49
vs. MODL   4, 6

nocmodl   See NMODL: translator

nocmodl.exe   See NMODL: translator

NONLINEAR block   16

nonlinear ODE   18

PARAMETER block   7
default values   7
specifying max and min values of PARAMETER variables   10

PARAMETER variable   7
abrupt change or discontinuity   See discontinuities: in ASSIGNED or PARAMETER

variables
change in mid-run   7
global scope vs. RANGE   7
GLOBAL vs. RANGE   26, 42
RANGE   12
specifying max and min values   10
visibility at the hoc level   7
when to use for equilibrium potential   15

parentheses   See units: conversion factor

passive “leak” current   See Example 1: a passive “leak” current

point process   9, 11

Point Process Manager and Viewer   See graphical user interface

POINTER variable   49
setpointer   49

PROCEDURE block   16, 24

products   28
ASSIGNED or PARAMETER variables as   32

radial diffusion   35, 42

RANGE variable   6. See RANGE under NEURON block, ASSIGNED variable, PARAMETER
variable

ASSIGNED variable   8
PARAMETER variable   7

rate functions
call from the block specified by the SOLVE statement   17

reactants   28
ASSIGNED or PARAMETER variables as   32
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reaction
indicator “<->”   28
products   28

ASSIGNED or PARAMETER variables as   32
rates   28

voltage-sensitive   29
reactants   28

ASSIGNED or PARAMETER variables as   32
sink indicator “->”   48
source or sink   33
statement   28

relative tolerance   See variable time step: tolerance

restore()   See initialization: SaveState / RestoreState

RestoreState   See initialization: SaveState / RestoreState

Runge-Kutta method   33

saturating synapses   See Example 13: saturating synapses

SaveState   See initialization: SaveState / RestoreState

scale factor   See units: conversion factor

SCoP   4, 8. See MODL

second messenger   See Example 12: use-dependent synaptic plasticity

second-order accuracy   See accuracy

setdata_   See FUNCTION block: setdata_

shunt.mod   See Example 2: a localized shunt

Simulation Control Program   4

simultaneous chemical reactions   See kinetic schemes

sink reaction
indicator “->”   53

sink reaction indicator “->”   48

SOLVE   See BREAKPOINT block: SOLVE, INITIAL block: SOLVE: STEADYSTATE sparse

sparse   See KINETIC block, BREAKPOINT block:SOLVE: sparse

STATE block   16

STATE variable   16
abrupt change or discontinuity   48
and COMPARTMENT statement in KINETIC block   41
array   34
ASSIGNED variable as   8
automatically a RANGE variable   15, 16
default initialization   17
dependent vs. independent   32
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initialization   17
initialization strategies   17
ionic concentration as   26
Jacobian   18
not all reactants or products need to be   32
not always needed   8, 10
of a mechanism vs. state variable of a model   8
SaveState / RestoreState   17
state_discontinuity()   48, 51, 53
unknowns in kinetic schemes   28
vector   See STATE variable: array
vs. state variable   16, 32

STEADYSTATE   See INITIAL block: SOLVE: STEADYSTATE sparse, initialization

stiffness   18

sudden changes   See discontinuities

SUFFIX   See NEURON block: SUFFIX

synapse with exponential decay   See Example 10: synapse with exponential decay

synaptic models   49
ephapse   49
essential distinction   49
gap junction   49
NET_RECEIVE   50
NET_RECEIVE block   51
networks   See NetCon (network connection) class
saturation   See Example 13: saturating synapses
second messenger   See Example 12: use-dependent synaptic plasticity
STATE variable discontinuities   48
use-dependent plasticity   See Example 12: use-dependent synaptic plasticity

t
independent variable in NEURON   8
use in NMODL   8

table_   See FUNCTION_TABLE, KINETIC block

temparature   See celsius

tilde   See KINETIC block: ~

tolerance   See variable time step: tolerance
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units
checking   6, 7, 10, 15
consistency   7, 36

in kinetic schemes   36, 42
conversion factor   10, 22, 28, 39

“e” in expressions   23
disabling checking   19
mole

as Avogadro’s number   44
vs. mol   44

specification   7, 15, 19
UNITSOFF . . . UNITSON   19

UNITS block   15
(1)   39
conversion factor   22, 39
dimensionless constant   39
dimensionless variable   7

UNIX units database   7, 15, 22

use-dependent synaptic plasticity   See Example 12: use-dependent synaptic plasticity

USEION   See NEURON block: USEION

v_init   17, 27

variable   See units
arrays   See arrays
ASSIGNED   See ASSIGNED block, ASSIGNED variable
define before use   6, 7
dependent in differential equations   8
dependent in kinetic schemes   8, 28
dimensionless   7
extensive   36
independent variable in NEURON   8
intensive   36
ionic   7
LOCAL   See LOCAL variable
name   5
name conflict   See NEURON block: SUFFIX
name suffix   See NEURON block: SUFFIX
PARAMETER   See PARAMETER block, PARAMETER variable
POINTER   49
STATE   See STATE variable
that belongs to a NetCon object   56
unknown in simultaneous equations   8, 16. See STATE variable
vector   See arrays



Hines and Carnevale: Expanding NEURON with NMODL

Revised 4/6/2000 Page 76

variable time step   6, 12, 16, 18, 30, 33, 41, 47, 48, 50, 51, 53. See CVODE
abrupt change or discontinuity

of a STATE variable   48, 51, 53
at_time()   12, 47, 48
cvode.re_init()   17
discontinuities   11, 12
local error   18, 39
local variable time step   50
state_discontinuity()   48, 51, 53
tolerance   39

variables that are available to all mechanisms   6, 7, 8

vector   See arrays

VERBATIM block   5

vext   12

voltage-gated current   See Example 4: a voltage-gated current
calcium-activated   See Example 5: a calcium-activated voltage-gated current
kinetic scheme   See Example 7: kinetic scheme for a voltage-gated current


