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Why use parallel computation?

Four reasons:

Get the results for a simulation in less real time.

Run a larger simulation in the same amount of time.

Run more simulations (e.g. parameter sweeps).

Run models needing more memory than is available on one machine.

What are the downsides?
Parallel models introduce:

Greater programming complexity.

New kinds of bugs.

Other considerations

The 16384 core EPFL IBM BlueGene/P could theoretically do as many calculations in 1 hour at 850
MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a serial model;
converting a serial model to a parallel model is often more difficult.



When talking about the middle block, add: ``you have to decide if the time spent parallelizing your model can be recovered.''



Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different parameters is an example of
an embarrassingly parallel problem. NEURON supports this natively with bulletin boards;
Calin-Jageman and Katz (2006) developed a screen saver solution.

Distributing networks across processors

Cells can communicate by

logical spike events with significant axonal, synaptic delay.

postsynaptic conductance depending continuously on presynaptic voltage.

gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across different machines.

A parallel model can fall in 1, 2, or 3 of these classes.



Some parallel philosophy

A network of neurons is composed of many individual neurons of potentially many cell types.
Design and debug each cell type separately before building the network.

A simulation should give the same results regardless of the number of processors used to run it.

When possible, parameterize your network so you can run a small test first.



Connecting to MPI

Before we can do any MPI simulations, we need to let the computer know to initialize communication
between multiple processors:

h.nrnmpi_init()



Synaptic connections with one processor

PreCell PostCell

PostSyn
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nc = h.NetCon(PreSynPtr, PostSyn, sec=presyn_section)

nc.delay = 1 * ms

By default, delay is measured in ms.

We can also set: nc.weight and nc.threshold[].

PreSynPtr is a pointer, e.g. soma(0.5). ref v; PostSyn is a point process e.g. an instance of h.ExpSyn.



If cells in different processes, a different approach is needed
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The ParallelContext object facilitates building parallel models.

pc = h.ParallelContext()



Every spike source must have a GID.

1 5 2 6

3 7 4

Processor 1 Processor 2

Processor 3 Processor 4

Note: to ensure the model produces identical results regardless of the number of processors, also use GIDs to
selecting random streams (e.g. Random123).



Building synapses

PreCell PostCell

PostSyn

PreSyn

gid = 9gid = 7



Configuring the presynaptic connection site

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9

Create cell only where the gid exists:
if pc.gid_exists(7):

PreCell = Cell()

Associate gid with spike source:
nc = h.NetCon(PreSynPtr, None, sec=presec)
pc.cell(7, nc)

PreSynPtr here is a pointer, e.g. PreCell.soma(0.5). ref v



Configuring the postsynaptic connection site

PreCell PostCell

PostSyn

PreSyn CPU 2 CPU 4

gid = 7 gid = 9
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Create NetCon on node where target exists:

nc = pc.gid connect(7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.



Spike exchange method
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Spike exchange method
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Spike exchange method
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Spike exchange method
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Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)

h.stdinit()

pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the NetCon delays and of the
argument to pc.set maxstep. In general, larger intervals are better because they reduce
communication overhead.

exchange exchange

min delay

spikes here are delivered here

pc.set maxstep must be called on each node; it uses MPI Allreduce to determine the minimum delay.



Simple load-balancing strategy: round-robin.
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Simple load-balancing strategy: round-robin.

CPU 0
pc.id      0
pc.nhost   5
ncell     14

CPU 3
pc.id      3
pc.nhost   5
ncell     14

CPU 4
pc.id      4
pc.nhost   5
ncell     14
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An efficient way to distribute, especially if all cells similar:
for gid in range(pc.id(), ncell, pc.nhost()):

pc.set_gid2node(gid, pc.id())

...

(Note: the body is executed at most dncell/nhoste times, not ncell.)



Advanced load-balancing: balance work not number of cells

Strategy:

Distribute cells round-robin to all processors, instantiate them.

Compute an estimate of the computational complexity:

def complexity(self):

h.load_file('loadbal.hoc')
lb = h.LoadBalance()

return lb.cell_complexity(sec=self.all[0])

Destroy the cells, send the gid-complexity data to node 0.

(On node 0): distribute gids such that the next gid goes to the node with the least amount of
complexity.

Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use lb.ExperimentalMechComplex and lb.read complex.



Performance: MPI scaling



Performance: Spike exchange strategies
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Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.



Question

Suppose we now realize we want to know the time series of the m variable in the center of the soma of
cell 5. We only stored spike times. Do we have to modify our code to store that variable and rerun the
entire simulation?



Tip: Store synaptic events; recreate single cells as needed

initial conditions

+

synaptic events

neuron dynamics

Use NetCon.record method to store spike times; save them as e.g. JSON. Play them back into a
single cell simulation using h.PatternStim() and its play(time, gid) method.



Multisplit



Improve load balancing with multisplit
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Multisplit: methods
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Using multisplit (threads)

When not using MPI, enabling thread-based multisplit is as easy as clicking a checkbox:



Using multisplit (MPI)

For process-based multisplit (with MPI), use pc.multisplit to declare split nodes:

pc.multisplit(seg, subtreeid)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:

Each subtree can have at most two split nodes.

Does not support variable step, linear mechanisms, extracellular, or reaction-diffusion.

h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces than processes.



Example: Migliore et al 2014

Migliore et al 2014 used multisplit to improve load balancing on a model of the olfactory bulb.

http://modeldb.yale.edu/151681

See, in particular, the file multisplit distrib.py.



Gap Junctions



Continuous voltage exchange

s1(x1).v

s2(x2).v

g2 = h.HalfGap(s2(x2))
g1 = h.HalfGap(s2(x1))

g1.vgap

g2.vgap

HalfGap.mod

NEURON  {
 POINT_PROCESS HalfGap
 ELECTRODE_CURRENT i
 RANGE r, i, vgap
}
PARAMETER { r = 1e9 (megohm) }

ASSIGNED {
  v (millivolt)
  vgap (millivolt)
  i (nanoamp)
}
CURRENT { i = (vgap - v) / r }



pc.source var to declare source sgid

s1(x1).v

s2(x2).v

g2 = h.HalfGap(s2(x2))
g1 = h.HalfGap(s2(x1))

g1.vgap

g2.vgap

HalfGap.mod

NEURON  {
 POINT_PROCESS HalfGap
 ELECTRODE_CURRENT i
 RANGE r, i, vgap
}
PARAMETER { r = 1e9 (megohm) }

ASSIGNED {
  v (millivolt)
  vgap (millivolt)
  i (nanoamp)
}
CURRENT { i = (vgap - v) / r }

sgid
1

sgid
2

pc.source_var(s2(x2)._ref_v, 2)

pc.source_var(s1(x1)._ref_v, 1)



pc.target var to declare target connection

s1(x1).v

s2(x2).v

g2 = h.HalfGap(s2(x2))
g1 = h.HalfGap(s2(x1))

g1.vgap

g2.vgap

HalfGap.mod

NEURON  {
 POINT_PROCESS HalfGap
 ELECTRODE_CURRENT i
 RANGE r, i, vgap
}
PARAMETER { r = 1e9 (megohm) }

ASSIGNED {
  v (millivolt)
  vgap (millivolt)
  i (nanoamp)
}
CURRENT { i = (vgap - v) / r }

sgid
1

sgid
2

pc.source_var(s2(x2)._ref_v, 2)

pc.source_var(s1(x1)._ref_v, 1)

pc.target_var(g2._ref_vgap, 1)

pc.target_var(g1._ref_vgap, 2)



Performance: Traub model
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Performance: Traub model with multisplit
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