Selected resources for computational neuroscience

23 November 2020


```
from neuron import h, rxd
import neuron.rxd.node as node
from matplotlib import pyplot
import time
h.load file('stdrun.hoc')
soma = h.Section()
soma.L = 10
soma.diam = 10
soma.nseg = 11
dend = h.Section()
dend.connect(soma)
dend.L = 50
dend.diam = 2
dend.nseg = 51
def print nodes():
   print ', '.join(str(v) for v in node._states)
print 'defining rxd'
region = rxd.Region(h.allsec(), nrn_region='i')
ca = rxd.Species(region, name='ca', d=1, charge=2, initial:
reaction = rxd.Rate(ca, -ca * (1 - ca) * (0.3 - ca))
print 'initializing'
```

Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal excitability of oblique dendrites implicated in early Alzheimer's: a computational study *Front.*Neural Circuits 4:16[PubMed]

References and models cited by this paper

Acker CD, White JA (2007) Roles of I(A) and morphology in action potential propagation in CA1 pyramidal cell dendrites. *J Comput Neurosci* 23(2):201-16 [Journal]

 Roles of I(A) and morphology in AP prop. in CA1 pyramidal cell dendrites (Acker and White 2007) [Model]

Anderton BH, Callahan L, Coleman P, Davies P, Flood D, Jicha GA, Ohm T, Weaver C (1998) Dendritic changes in Alzheimer's disease and factors that may underlie these changes. *Prog Neurobiol* **55**:595-609 [PubMed]

Andrasfalvy BK, Makara JK, Johnston D, Magee JC (2008) Altered synaptic and non-synaptic properties of

References and models that cite this paper

Culmone V, Migliore M (2012) Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments Front Comput Neurosci 6:52 [Journal] [PubMed]

 CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012) [Model]

McDougal RA, Morse TM, Hines ML, Shepherd GM (2015) ModelView for ModelDB: online presentation of model structure Neuroinformatics 13(4):459-70 [Journal] [PubMed]

 ModelView: online structural analysis of computational models (McDougal et al. 2015) [Model]

modeldb.yale.edu

What is in ModelDB?

- Models for:
 - 181 cell types
 - 21+ species
 - 58 ion channels, pumps, etc
 - 169 topics (Alzheimer's, STDP, etc)
 - 25+ mammalian brain regions
- 1616 published models from 96 simulators/programming languages
- 737 NEURON models.
- 513 network models.

Distributions from ModelDB, Fall 2013. A model was counted as having 0 files if it was not hosted on ModelDB.

Only reuse what you understand

The easiest way to replicate someone else's results – a first step toward building on them – is to get their model code from a repository such as ModelDB.

But beware:

- They may be solving a different problem than you (with respect to species, temperature, age, etc).
- Their code may have bugs.

To reduce the risk of problems:

- Read the associated paper.
- Compare the model and results to other similar models.
- Examine the model with ModelView and/or psection.
- Test ion channels individually.
- Collaborate with an experimentalist.

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

а

Morse et al. 2010 - 2 Density Mechanisms 18 mechanisms in use "Ra cm pas "na_ion "k_ion ca ion cacum (cacumm.mod) READs: ica WRITEs: cai, Nonspecific Current Present in 193 sections cagk (<u>cagk.mod</u>) "READs: cai, ek WRITEs: ik Present in 193 sections Possibly temperature dependent ⊕ cal (cal2.mod)

b

General data

ICG id: 2464

ModeIDB id: 87284

 Reference: Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010): Abnormal Excitability of Oblique Dendrites Implicated in Early Alzheimer's: A Computational Study.

Metadata classes

Animal Model: rat

· Brain Area: hippocampus, CA1

Classes: KCaIon Type: K

Neuron Region: unspecified
 Neuron Type: pyramidal cell

Runtime Q: Q4 (slow)
 Subtype: not specified

Metadata generic

Age: 7-14 weeks old.

Comments: Calcium activated k channel, modified from moczydlowski and latorre (1983). From hemond
et al. (2008), model no. 101629, with no changes (identical mod file). Animal model taken from chen
(2005) which is used to constrain model. Channel kinetics from previous study on hippocampal pyramidal
neuron (hemond et al. 2008)

Runtime: 76.722

ICGenealogy: ion channel metadata

When viewing most mod files describing an ion channel, an ICGenealogy button appears. Clicking this button loads the corresponding page of the ICGenealogy derived, information about the underlying data, etc) and response curves.

Channel Browser

A graphical user interface to all channels currently available in our database. We offer several interactive

Contribute

Together we can improve ICG! Upload your own channel models or submit tickets to correct existing ones should

API

All our data is accessible via an API. This enables you to run automated evaluations against current traces, or

ModelDB for meta-literature review

- Every model can be considered a review of the literature.
- ModelDB reveals what has been modeled in each cell type.
- Comparing models shows what mechanisms are considered critical by the community.

Hippocampus CA1 Pyramidal Cells

IA

47 models: 2796, 7386,
9769, 19696, 20212, 32992,
44050, 55035, . . .

IK,Ca

• 11 models: 20212, 87284, 115356, 119266, 123927, 125152, . . .

IM

• 16 models: 2937, 20212, 66268, 112546, 115356, 118986, 119266, . . .

26 currents, 6 transmitters, 10 receptors

Sharing your models

search Q
Advanced search

ModelDB

SimToolDB

ModelDB Help

User account

Login Register

Find models by

Model name

First author

Each author
Region(circuits)

Find models for

Cell type

Current

Receptor

Transmitters

Topic

Gene

Simulators

Methods

Find models of

Realistic Networks

Neurons

Electrical synapses (gap junctions)

Chemical synapses

Ion channels

Neuromuscular junctions

Axons

Other resources

ModelDB related resources

Models in mercurial repository

Submit Model

ModeIDB provides an accessible location for storing and efficiently retrieving computational neuroscience models. ModeIDB is tightly coupled with NeuronDB. ModeIs can be coded in any language for any environment. Model code can be viewed before downloading and browsers can be

set to auto-launch the models. For further information, see model sharing in general and ModelDB in particular.

Browse or search through over 1000 models using the navigation on the left bar or in the menu button on a mobile device. To search papers instead of models, go here; this may be used to identify models whose paper cites or is cited by a given paper.

Tweets by @SenseLabProject

Follow

ModeIDB Home SenseLab Home Help

Questions, comments, problems? Email the ModeIDB Administrator

How to cite ModelDB ModelDB Credits

SenseLab

Required information:

ModelDB Help

Advanced search

User account

Login

Register

Find models by

Model name

First author

Each author

Region(circuits)

Find models for

Cell type

Current

Receptor

Gene

Transmitters

Topic

Simulators

Methods

Find models of

Realistic Networks

Neurons

Electrical synapses (gap junctions)

Chemical synapses

Ion channels

Neuromuscular junctions

Axons

Other resources

ModelDB related resources

Computational neuroscience

Submit New Model

Your full name:	Modeler or Contributor name	
Your email address:	Email	
Zip file of model code:	Choose File No file chosen	
Read-Write access code (15 character max): Used as a password to only access this model	Access code	
PubMed ID(s) or citation(s) associated with the model: Only required for publicly shared models. Citation(s) can be in any bibliographic format.		

You may Submit with just the above information, but to make your model more discoverable, please fill out as much of the next section as you can. Note: Your model will remain private until you request the ModelDB administrator make it public.

Let us find ModelDB keywords for you!

Click the button to automatically find, approve, and populate model entry keywords based on your paper abstract.

Additional information: More information will help your model more discoverable

earch	C
-------	---

Advanced search

SenseLab

SimToolDB

	•	
Other Neuron		
Model Neurotransmitters	▼	
Other Neurotransmitter		
Model Receptors	▼	
Other Receptor		
Model Currents	x I Potassium	
	x I A	
Other Current		
Gap Junctions		
Gene	▼	
Other Gene		
Model Type	x Neuron or other electrically excitable cell	
	▼ ·	
Other Model Type		
Model Concept	x Dendritic Action Potentials	
	x Action Potentials	
	x Calcium dynamics	
	x Active Dendrites	
	x Aging/Alzheimer`s	
	V	
Other Concept		
Simulator software		
Other Simulator		
Region Organism	▼	
Implemented by	▼	

ModelDB redesign

- Updated look.
- More integrated ModelView data, with support for more simulator types.
- More emphasis on analysis.
- Mobile device friendly.
- Simpler API.
- (Soon to be) public GitHub; submit issues and pull requests.
- Current status: see http://52.90.37.175

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010) 📩

Search

Overview Mechanisms Citations **Files Parameters** The model simulations provide evidence oblique dendrites in CA1 pyramidal neurons are susceptible to hyper-excitability by amyloid beta block of the transient K+ channel, IA. See paper for details. Model Type: Neuron or other electrically excitable cell Cell Type(s): Hippocampus CA1 pyramidal GLU cell Currents: I Na,t; I L high threshold; I N; I T low threshold; I A; IK; Ih; IK, Ca Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Pathophysiology; Aging/Alzheimer`s **Simulation Environment: NEURON** Implementer(s): Carnevale, Ted [Ted.Carnevale at Yale.edu] **Show Diameter** ; Morse, Tom [Tom.Morse at Yale.edu] References: Simulation Platform Morse TM, Carnevale NT, Mutalik PG, Migliore M,

Shepherd GM. (2010). Abnormal Excitability of Oblique

NeuroMorpho.Org

Version 8.0 - Released: 6/29/2020 - Content: 131960 neurons

Total number of downloads: 13894 177

Total site hits since August 1, 2006: 6634 16

HOME

BROWSE

SEARCH

LITERATURE COVERAGE

TERMS OF USE

HELP

<u>.</u>

Home > Homepage

Reconstructions from 384 brain regions >3.57 million hours of manual reconstructions

NeuroMorpho.Org

Version 8.0 - Released: 6/29/2020 - Content: 131960 neurons

HOME BROWSE SEARCH LITERATURE COVERAGE TERMS OF USE HELP 🗓 0

Morphology File (Standardized)

Morphology File (Original)

Log File (Standardized)

Log File (Original)

Get above files zipped

3D Neuron Viewer - Java, legacy
3D Neuron Viewer - WebGL, novel
Animation

Details about selected neuron

NeuroMorpho.Org ID: NMO_00227

Neuron Name: c91662

Archive Name: Amaral

Species Name: rat

Strain: Sprague-Dawley

Structural Domains: Dendrites, Soma, Axon

Physical Integrity: Dendrites Complete, Axon Incomplete

Morphological Attributes: Diameter, 3D, Angles

Min Age: 33.0 days

Standardized: Always SWC

Original format: Could be anything

NeuroMorpho.Org ID: NMO_00082

Neuron Name: n401 Archive Name: Turner **Species Name: rat** Strain: Fischer 344

Structural Domains: Dendrites, Soma, No Axon

Physical Integrity: Dendrites Complete

Morphological Attributes: Diameter, 3D, Angles

Min Age: 2.0 months
Max Age: 8.0 months
Gender: Male/Female
Min Weight: 200 grams
Max Weight: 350 grams
Development: young

Primary Brain Region: hippocampus

Secondary Brain Region: CA1
Tertiary Brain Region: Not reported
Primary Cell Class: principal cell
Secondary Cell Class: pyramidal
Tertiary Cell Class: Not reported
Original Format: CVAPP.swc
Experiment Protocol: in vivo
Experimental Condition: Control
Staining Method: biocytin

Slicing Direction : coronal
Slice Thickness : 80.00 μm

Tissue Shrinkage: Reported 25% in xy, 75% in z

Corrected 133% in xy, 400% in z

Objective Type : oil Magnification : 100x

Reconstruction Method: Neurolucida Date of Deposition: 2005-12-31 Date of Upload: 2006-08-01 Soma Surface : $903.25 \mu m2$

Number of Stems: 7

Number of Bifurcations: 113
Number of Branches: 233
Overall Width: 363.7 µm
Overall Height: 717.18 µm
Overall Depth: 364.21 µm
Average Diameter: 1.16 µm
Total Length: 22216.3 µm
Total Surface: 84796.1 µm2
Total Volume: 30674.3 µm3

Max Euclidean Distance : 668.56 μm Max Path Distance : 1893.37 μm

Max Branch Order: 25 Average Contraction: 0.7 Total Fragmentation: 5460 Partition Asymmetry: 0.56 Average Rall's Ratio: 1.78

Average Bifurcation Angle Local: 89.59° Average Bifurcation Angle Remote: 75.23°

Fractal Dimension: 1.07

THE JOURNAL OF COMPARATIVE NEUROLOGY 391:335–352 (1998)

Dendritic Properties of Hippocampal CA1 Pyramidal Neurons in the Rat: Intracellular Staining In Vivo and In Vitro

G.K. PYAPALI, ¹² A. SIK, ⁸ M. PENTTONEN, ³ G. BUZSAKI, ³ AND D.A. TURNER! ¹²-the partment of Neurosurgery, Duke University, Durham, North Carolina 27710 ²³ Durham Veterans Affairs Medical Center, Durham, North Carolina 27710 ³ Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 ⁴ Department of Neurobiology, Duke University, Durham, North Carolina 27710

Not every morphology was reconstructed with the intent of being in a simulation.

Not everything was made for you

Potential factors affecting the quality of the data:

- histology
 - staining, amputation, shrinkage
- physics
 - diameter
- spines

Before using a morphology found online, always read the associated paper(s) to make sure you understand any limitations of the reconstruction.

For example, why did they make this? Were they studying a disease (e.g. Alzheimer's) that alters morphology?

Look for orphan sections and bottlenecks.

Qualitative tests

Insert pas, set Ra and g_pas = pas.g low. Inject large depolarizing current at soma. Examine a PlotShape of v.

Look for z-axis drift and backlash.
Rotate the cell on a PlotShape and look for abrupt jumps.

Are diameters constant or varying? Are they reasonable?

Loading Morphologies

```
from neuron import h
h.load_file('import3d.hoc')

cell = h.Import3d_SWC_read()

cell.input('filename.swc')

i3d = h.Import3d_GUI(cell, False)

i3d.instantiate(None) # or i3d.instantiate(self)
```


Plotting Morphologies

```
import plotly

ps = h.PlotShape(False)
ps.scale(-80, 40)
ps.variable('v')
ps.plot(plotly).show()
```

Example


```
# Original file c91662.swc edited using StdSwc version 1.31 on 11/10/13.
# Irregularities and fixes documented in c91662.swc.std. See StdSwc1.31.doc for more information.
# Neurolucida to SWC conversion from L-Measure. Sridevi Polavaram: spolavar@gmu.edu
# Original fileName:C:\Users\praveen\Desktop\Uzma\ErrorArchives\ToBeProcessed\Amaral\asc\c91662.asc
#The original file has a single soma contour that is averaged into 3 soma points
# NEUROMANTIC V1.6.3 (10/18/2013 6:55:13 PM): Saved to c91662-T1.swc
1 1 0.0 0.0 0.0 8.8677 -1
2 1 1.13 8.71 1.2 8.8677 1
3 1 -1.13 -8.71 -1.2 8.8677 1
4 4 -1.86 11.06 -0.47 1.85 1
5 4 -1.94 19.75 -0.65 1.6 4
6 4 -2.52 31.1 -1.23 1.35 5
7 4 -2.94 39.91 -2.02 1.35 6
8 4 -2.55 49.45 -1.47 1.1 7
9 4 -2.61 56.49 -0.77 1.1 8
10 4 -1.17 70.15 -1.59 1.1 9
11 4 2.04 83.45 -1.43 1.1 10
12 4 1.89 91.65 -1.68 1.1 11
13 4 4.35 106.58 -1.57 1.1 12
14 4 5.09 115.06 -1.02 1.1 13
15 4 7.16 126.11 -1.93 1.1 14
16 4 7.13 129.63 -1.58 1.1 15
17 4 9.19 135.02 -2.02 1.1 16
18 4 11.82 145.77 -1.23 1.1 17
19 4 13.47 151.73 -1.73 0.9 18
20 4 14.65 157.05 -0.86 0.9 19
21 4 15.6 164.42 0.15 0.9 20
22 4 17.22 166.37 -0.76 0.9 21
23 4 17.27 175.11 -1.42 0.8 22
24 4 17.43 180.1 -0.87 0.8 23
25 4 18.41 192.2 -0.94 0.8 24
26 4 20.93 207.62 -0.75 0.8 25
27 4 22.64 214.07 -1.18 0.8 26
28 4 26.23 231.47 2.1 0.8 27
29 4 28.89 246.23 3.3 0.8 28
30 4 31.83 252.62 2.17 0.8 29
31 4 33.06 266.68 2.37 0.8 30
32 4 36.17 276.41 2.67 0.8 31
33 4 38.23 281.8 2.23 0.8 32
34 4 43.26 297.81 3.18 0.8 33
35 4 49.51 314.69 4.04 0.8 34
36 4 51.98 319.51 3.66 0.8 35
37 4 55.37 329.56 5.11 0.8 36
38 4 59.09 339.26 5.05 0.8 37
39 4 63.87 351.94 0.9 0.8 38
40 4 65.01 361.5 0.62 0.8 39
41 4 64.84 372.28 0.1 0.6 40
42 4 63.56 393.06 -1.8 0.6 41
43 4 63.28 401.93 -3.07 0.6 42
44 4 62.98 405.13 -3.87 0.6 43
45 4 61.56 411.24 -2.61 0.6 44
46 4 57.99 423.02 -3.47 0.6 45
```


Open Source Brain is a resource for sharing and collaboratively developing computational models of neural systems.

Learn more about the OSB interface

Learn about the Hodgkin Huxley model

Simulate electrophysiologically detailed cell models

Explore more OSB projects

Or create an account to add your own models and run simulations!

