
Networks:
spike-triggered synaptic transmission,

events, and artificial spiking cells

1. Define the types of cells

2. Create each cell in the network

3. Connect the cells



Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered



Spike-triggered synaptic transmission

Physical system:

Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:

Spike in presynaptic terminal
triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike



Spike-triggered transmission:
computational implementation

Basic idea

More efficient: "virtual spike propagation"



The NetCon class

Python usage

nc = h.NetCon(source, target)
nc = h.NetCon(source_ref_v, target 

[, threshold, delay, weight, 
sec = section])

Defaults

nc.threshold = 10.0
nc.delay = 1.0 # must be >= 0
nc.weight[0] = 0.0 # weight is an array

NMODL specification of synaptic mechanism

NET_RECEIVE(weight(microsiemens)) {
    . . .
}



Efficient divergence

Multiple NetCons with a common source
share a single threshold detector



Efficient convergence

Multiple NetCons can share
a single target (many inputs,
but only one equation)



Example: gs with fast rise

and exponential decay

NEURON {
  POINT_PROCESS ExpSyn
  RANGE tau, e, i
  NONSPECIFIC_CURRENT i
}

  . . . declarations . . .

INITIAL { g = 0 }

BREAKPOINT {
  SOLVE state METHOD cnexp
  i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g = g + w }



gs with fast rise and exponential decay

continued

BREAKPOINT {
  SOLVE state METHOD cnexp
  i = g*(v-e)
}

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g = g + w }



Example: use-dependent synaptic plasticity



BREAKPOINT {
  SOLVE state METHOD cnexp
  g = B - A
  i = g*(v-e)
}

DERIVATIVE state {
  A' = -A/tau1
  B' = -B/tau2
}

NET_RECEIVE(weight (uS), w, G1, G2, t0 (ms)) {
  INITIAL {w=0 G1=0 G2=0 t0=t}
  G1 = G1*exp(-(t-t0)/Gtau1)
  G2 = G2*exp(-(t-t0)/Gtau2)
  G1 = G1 + Ginc*Gfactor
  G2 = G2 + Ginc*Gfactor
  t0 = t
  w = weight*(1 + G2 - G1)
  g = g + w
  A = A + w*factor
  B = B + w*factor
}

Use-dependent synaptic plasticity continued



Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks



Example: leaky integrate and fire model



Leaky integrate and fire model continued

NEURON {
  ARTIFICIAL_CELL IntFire
  RANGE tau, m
}
  . . . declarations . . .

INITIAL { m = 0   t0 = t }

NET_RECEIVE (w) {
  m = m*exp(-(t-t0)/tau)
  t0 = t
  m = m + w
  if (m > 1) {
    net_event(t)
    m = 0
  }
}



IntFire1

IntFire2

IntFire4



Defining the types of cells

Artificial spiking cells

ARTIFICIAL_CELL with a NET_RECEIVE block 

that calls net_event

NetStim, IntFire1, IntFire2, IntFire4

Biophysical model cells

"Real" model cells

Sections and density mechanisms

Synapses are POINT_PROCESSes

that affect membrane current
and have a NET_RECEIVE block,

e.g. ExpSyn, Exp2Syn



Defining types of biophysical model cells

Encapsulate in a class

Export hoc class definition from CellBuilder or Network Builder

    or

write your own in Python. 

class Cell:
  def __init__(self)
    # specify geom, topol, biophys
    soma = h.Section(name='soma')
    self.soma = soma
    ... etc. ...

cells[]
N = 1000
for i in range(N):
  cell = Cell() # h.Cell() if Cell is defined in hoc
  cells.append(cell)


