Networks:

spike-triggered synaptic transmission,
events, and artificial spiking cells

1. Define the types of cells
2. Create each cell in the network
3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered

Spike-triggered synaptic transmission

Physical system: >
Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:
Spike In presynaptic terminal
triggers transmitter release;
presynaptic details unimportant

Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Complete
representation
of propagation
from spike init.
zone through
axon to terminal

Basic idea
Spike Synaptic
detector latency

g Postsynaptic
S/~ region

More efficient: "virtual spike propagation"

Spike

initiation
zone

Spike

detector

Delay

conduction

latency
I

synaptic
latency

¥

Postsynaptic
region

The NetCon class

Python usage

nc = h.NetCon(source, target)
nc = h.NetCon(source_ref_v, target
|, threshold, delay, weight,
sec = section])
Defaults
nc.threshold = 10.0
nc.delay = 1.0 # must be >= 0

nc.welght[0O] 0.0 # welght 1s an array

NMODL specification of synaptic mechanism
NET_RECEIVE(welight(microsiemens)) {

}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector

Spike
Initiation
zone

=

Spike
detector

= Delay 0

> 0

Postsynaptic
region O

—{ Delay 1

—> 0.

Postsynaptic
region 1

Efficient convergence

Multiple NetCons can share

a single target (many inputs,
but only one equation)

Spike
Initiation
zone O

Spike

~| detector O

Spike
Initiation
zone 1

Spike

Delay O

Postsynaptic
region

detector 1

Delay 1

Example: g, with fast rise
and exponential decay

NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, 1
NONSPECIFIC_CURRENT 1

}

. declarations .
INITIAL { g = 0 }

BREAKPOINT {
SOLVE state METHOD cnexp

= g*(v-e)
}

DERIVATIVE state { g' = -g/tau }
NET_RECEIVE(w (uS)) { g =g + w }

g with fast rise and exponential decay
continued

e :
9.__5___Lh__¢$LNM¢$k, _
V.__fxr.f\h_fﬂvfnmvv\h_____

BREAKPOINT {
SOLVE state METHOD cnexp
1 g*(v-e)
h
DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g =g + w }

Example: use-dependent synaptic plasticity

o GSyn[0].q

-l i

00 \ \\N
\\Ek\xx L

0 20 40

Use-dependent synaptic plasticity continued

BREAKPOINT {

GSyn[0].g
SOLVE state METHOD cnexp 0003 —
g=B - A
i =g*(v-e) 0.002 f— r\(\(\(\(\(\(\(\
¥
DERIVATIVE state { poo \\\\\ \\
A' = -A/taul
B' = -B/tau2 0 \Lﬁ>¥>§é§5

} 0 20 40 60 80 100

NET_RECEIVE(weight (uS), w, G1, G2, t0 (ms)) {
INITIAL {w=0 G1=0 G2=0 tO=t}

Gl = G1l*exp(-(t-tO)/Gtaul)
G2 = G2%exp(-(t-tO)/Gtau2)
Gl = G1 + Ginc*Gfactor

G2 = G2 + Ginc*Gfactor

t0 = t

w = weight*(1 + G2 - G1)
g=0 +Ww

A = A + w*factor

B =B + w*factor

Artificial spiking cells

"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
Independent of # of cells, # of connections,

and problem time

Hybrid networks

Example: leaky integrate and fire model

>1 L | ||
S2 | L 1 1 1 | | |

Ny W

Leaky integrate and fire model continued

NEURON {
ARTIFICIAL_CELL IntFire
RANGE tau, m

}

. declarations .
INITIAL { m = 0 to = t }

NET_RECEIVE (w) {
m = m*exp(-(t-tO)/tau)
to = t
m=m+ w
if (m>1) {
net_event(t)
m= 0
h
h

IntFirel

IntFire2

IntFire4

IntFire1[0]

tau (ms) i i|1D Iil

refrac (ms) B |_il

m 'JO

IntFire2[0]
Kl
E
2

IntFire4[0]

taue (ms) Iil
2l
2l
2l

0.8

06

0.4

0.2

IntFire1[0].M

80 100

027

IntFire2[0].1

IntFire2[0].M

20 40 60 80 100

051

03[

01

IntFire4[0].M

IntFire4[0].E

0.1%

0.3 [IntFire4{1].|

05—

IntFire4[1].M

Defining the types of cells

Artificial spiking cells
ARTIFICIAL_CELL with a NET_RECEIVE block
that calls net_event

NetStim, IntFirel, IntFire2, IntFire4

Biophysical model cells
"Real" model cells
Sections and density mechanisms

Synapses are POINT_PROCESSes

that affect membrane current
and have a NET_RECEIVE block,

e.g. EXpSyn, EXp2Syn

Defining types of biophysical model cells

Encapsulate in a class

Export hoc class definition from CellBuilder or Network Builder

or
write your own in Python.

class Cell:
def __init_ (self)
specify geom, topol, biophys
soma = h.Section(name='soma')
self.soma = soma
. etc.

cells[]

N = 1000

for 1 in range(N):
cell = Cell() # h.Cell() 1if Cell is defined 1in hoc
cells.append(cell)

