wWhy the GUI?

Improves productivity regardless of programming (in)experience
by making it easier to

develop, debug, and maintain models

understand models developed by others

visualize and understand simulation results

use exploratory simulations to study model behavior
optimize model parameters

quickly create prototype models that can be mined for
reusable code

Save time and avoid creating bugs--write less code!
Result: do more with less effort.

Using the GUI with Python

"l don't need to heatr this. | use Python, and the GUI
doesn't work with Python."--Anonymous dodo

Not so. The GUI works well with Python. Cells can be specified
In hoc or Python (see "Scripting NEURON" by R McDougal)

Example: pyrtest.py

from neuron import h,gui
h.load_file('Pyr.hoc') # hoc template for Pyr class
built with and exported from CellBuilder
pyr = h.Pyr() # create instance of Pyr class
h.load_file('pyrtestrig.ses') # user 1nterface
built with NEURON's GUI tools

python -1 pyrtest.py

F

P NMEURON Main Menu

[canify

Ale Buid Tools Graph Vector Window Hepp |

LT

RunControl _ | Graphlo] Crosshairx-1: 11 y -92 (| ”| Graphll] x -342.057 : 1008.35 ¥y -

Hide 'g:mse Hide Ecmse Hide

g Pyr{0].soma.vi 0.5)

Init & Bun

/\léém
/

-60 —

[| PointProcessMana

SefecT Poiil Process Init & Run

Real Time 3. Show Seconds per step (s)
[Clamp[0]

at: Pyr[0].somaf0.3)

-

GUI tools

Many do things that would be very difficult, if not impossible,
to accomplish with user-written code.

Import3d, Linear Circuit Builder, Multiple Run Fitter (optimizer),
Impedance tools for analyzing electrical signaling in cells.
Some export code that can be reused with hoc and Python.

CellBuilder, Channel Builder, Linear Circuit Builder,
Network Builder, Import3d, Model View (exports NeuroML)

Many can be saved directly to files for use by user-written hoc
or Python script (example: pyrtest.py's custom interface)

Graphs, RunControl, any of the "Builders," Variable Step Control

See GUI tool tutorials on the Documentation page
https://neuron.yale.edu/neuron/docs

The most powerful approach:
combine code and the GUI

The GUI
e always works
e can only do what it was designed to do

Coding is best for classical programming tasks, e.g.
e dealing with collections of things

e specifying custom initializations

e constructing complex simulation protocols
 filling gaps that aren't covered by the GUI

For maximum productivity, combine user-written code
and the GUI to exploit the strengths of both.

