Schedule of Presentations

MLH Michael Hines

RM Robert McDougal

Morning session

Time	Speaker	Title	Page
9:00 AM	MLH	Welcome	3
9:05	NTC	NEURON: a brief tour	5
	NTC	The basics	9
	NTC	Construction and use of models	19
	NTC	Using the CellBuilder to make a stylized model	20
	NTC	Creating and using an interface for running simulations	32
10:15	NTC	The Linear Circuit Builder	43
10:30	Coffee Break		
10:45	MLH	Using NMODL to add new biophysical mechanisms	51
11:15	MLH	Numerical methods: accuracy, stability, speed	59
11:30 AM	NTC	Networks: spike-triggered synaptic transmission, events, and artificial spiking cells	65
12:15 PM	Lunch		
Afternoon s	session		
1:15 PM	MLH	Numerical methods: adaptive integration and events	75
1:30	MLH	Parallelizing network simulations	79
2:00	RM	NEURON with Python	95

3:15	Coffee Break		
3:30	RM	ModelDB and other resources for computational neuroscience	115
4:00	RM	Reactive Diffusion	129
4:45	MLH	Future directions	
5:00		End of afternoon session	

Receipt and Survey

last two pages

We value your opinions and suggestions for improving this course. Please take a moment to fill out and hand in the survey.

Satellite Symposium, Society for Neuroscience

Using NEURON to Model Cells and Networks

Chicago, IL Friday, October 16, 2015

> Ted Carnevale Michael Hines Robert McDougal

Supported by NINDS

http://neuron.yale.edu/

The What and the Why of Neural Modeling

The moment-to-moment processing of information in the nervous system involves the propagation and interaction of electrical and chemical signals that are distributed in space and time.

Empirically-based modeling is needed to test hypotheses about the mechanisms that govern these signals and how nervous system function emerges from the operation of these mechanisms.

2015

Signals	What moves	Driving force	What is conserved
Electrical	charge carriers	voltage gradient	charge
Chemical	solute	concentration gradient	mass

Mathematical description of a section

What we want:

$$c_{j}\frac{dv_{j}}{dt} + i_{ion_{j}} = \sum_{k} \frac{v_{k} - v_{j}}{r_{jk}}$$

What a new section gives us:

$$c_j \frac{dv_j}{dt} = \sum_k \frac{v_k - v_j}{r_{jk}}$$

i.e. membrane capacitance and axial resistance, but no ionic current.

How can we put ion channels in the membrane?


```
create soma, dend
connect dend(0), soma(1)
soma {
  L = 50 // [um] length
  diam = 50 // [um] diameter
  insert hh // Hodgkin-Huxley mechanism
  nseg = 1
}
dend {
  L = 200
  diam = 2
  insert pas // passive channels
  nseg = 3
}
```

	Range Variable	S
Name	Meaning	Units
diam	diameter	[µm]
CM	specific membrane capacitance	[µf/cm ²]
g_pas	specific conductance of the pas mechanism	[siemens/cm ²]
V	membrane potential	[mV]

Category	Variable	Units
Time	t	[ms]
Distance	diam, L	[µm]
Voltage	V	[mV]
Current		
specific	i	[mA/cm ²] (density)
absolute		[nA] (point process)
Capacitance		
specific	CM	[µf/cm ²]
absolute		[nf] (point process)
Conductance		
specific	g	[S/cm ²] (density)
absolute		[µS] (point process)
Cytoplasmic resi	stivity Ra	[Ω cm]
Resistance	SEClamp.rs	[10 ⁶ Ω]
Concentration	cai, nao, etc.	[mM]

Model specification summary

Topology: create and connect sections Geometry: stylized (L & diam) or 3D (x,y,z,diam) Biophysics: insert density mechanisms, attach "biological" point processes (synapses) Network models

Create cells Connect cells

2015

Construction and Use of Models

- 1. Specify the model ("virtual organism").
- 2. Specify the user interface ("virtual lab rig").
- 3. Tests
 - structural integrity
 - spatial grid
 - time steps

Example: using the GUI to build and exercise a stylized model

- 1. How to use the CellBuilder to create and manage a model cell.
- 2. How to use NEURON's graphical tools to make an interface for running simulations.

Shape

stick figure / detailed

- Channel distribution
 - uniform / nonuniform

whole cell / region / individual neurite

Creation

single cell / use in a network

Specifying the "Basename"
Section name prefix:
Section name prefix: ap Accept Cancel

2015

Entering values into numeric fields
Direct entry
del (ms)
Note yellow highlight on button
Spinner
dur (ms) 1
Red check means value has been changed from default
u u u u u u u u u u u u u u u u u u u
Mathematical expression
amp (nA)

What if channel density in the apical tree varies systematically with position, e.g. distance from the soma?

See "Specifying parameterized variation of biophysical properties" in the CellBuilder tutorial at http://neuron.yale.edu/neuron/docs

2015

NMODL

NEURON Model Description Language Add new membrane mechanisms to NEURON

Density mechanisms Point Processes

- Distributed Channels
- Electrodes
- Ion accumulation
- Synapses

Described by

- Differential equations
- Kinetic schemes
- Algebraic equations

Benefits

- Specification only --- independent of solution method.
- Efficient translated into C.
- Compact
 - One NMODL statement -> many C statements.
 - Interface code automatically generated.
- Consistent ion current/concentration interactions.
- Consistent Units

NMODL general block structure

What the model looks like from outside

```
NEURON {
SUFFIX kchan
USEION k READ ek WRITE ik
RANGE gbar, ...
}
```

What names are manipulated by this model

```
UNITS { (mV) = (millivolt) ... }
PARAMETER { gbar = .036 (mho/cm2) <0, le9>... }
STATE { n ... }
ASSIGNED { ik (mA/cm2) ... }
```

Initial default values for states

```
INITIAL {
    rates(v)
    n = ninf
}
```

Calculate currents (if any) as function of v, t, states

(and specify how states are to be integrated)

```
BREAKPOINT {
    SOLVE deriv METHOD cnexp
    ik = gbar * n^4 * (v - ek)
}
```

State equations

```
DERIVATIVE deriv {
    rates(v)
    n' = (ninf - n)/ntau
}
```

Functions and procedures

```
PROCEDURE rates(v(mV)) {
    ...
}
```

UNIX	MSWIN	
nrnivmodl nrngui	NEURON mknrndll Choose directory (containing .mod files) for creating nr Recent directories Recent directories	nmech.dll
	nrngui Recent directories Choose directory Quit	

Select NEURON Main Menu / Build / single compartment

Density mechanism

```
NEURON {
    SUFFIX leak
    NONSPECIFIC_CURRENT i
    RANGE i, e, g
}
                                     }
PARAMETER {
   g = .001 (mho/cm2) < 0, 1e9>
    e = -65 (millivolt)
}
                                     }
ASSIGNED {
    i (milliamp/cm2)
    v (millivolt)
}
                                     }
BREAKPOINT {
    i = g^*(v - e)
}
                                     }
```

Point Process

```
NEURON {
    POINT_PROCESS Shunt
    NONSPECIFIC_CURRENT i
    RANGE i, e, r
}
PARAMETER {
    r = 1 (gigaohm) <1e-9,1e9>
    e = 0 (millivolt)
}
ASSIGNED {
    i (nanoamp)
    v (millivolt)
}
BREAKPOINT {
    i = (.001)*(v - e)/r
}
```

Density mechanism Point Process

NMODL

SingleComp soma pas hh Yeak NEURON { POINT_PROCESS Shunt NONSPECIFIC_CURRENT i RANGE i, e, r

JI

}

Interpreter

```
soma {
    objref s
    insert leak soma s = new Shunt(.5)
    g_leak = .0001 s.r = 2
}
print soma.i_leak(.5)
```

Ion Accumulation

Ion Channel

UNITS Checking

```
NEURON { POINT_PROCESS Shunt ... }
PARAMETER {
    e = 0 (millivolt)
    r = 1 (gigaohm) <1e-9,1e9>
}
ASSIGNED {
    i (nanoamp)
    v (millivolt)
}
BREAKPOINT {
    i = (v - e)/r
}
```

Units are incorrect in the ''i = ...'' current assignment.

```
BREAKPOINT {
    i = (v - e)/r
}
```

The output from

modlunit shunt

is:

To fix the problem replace the line with:

i = (.001)*(v - e)/r

What conversion factor will make the following consistent?

nai' = ina / FARADAY * (c/radius) (uM/ms) (mA/cm2) / (coulomb/mole) / (um)

Compartmental Modeling

Not much mathematics required.

Good judgment essential!

Forward Euler

2015


```
Example: g<sub>s</sub> with fast rise
and exponential decay
NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, i
NONSPECIFIC_CURRENT i
}
. . . declarations . . .
INITIAL { g = 0 }
BREAKPOINT {
SOLVE state METHOD cnexp
i = g*(v-e)
}
DERIVATIVE state { g' = -g/tau }
NET_RECEIVE(w (uS)) { g = g + w }
```



```
Defining types of biophysical model cells
Encapsulate in a class
   begintemplate Cell
     public soma, E, I
     create soma
     objref E, I
     proc init() {
       soma {
         insert hh
         E = new ExpSyn(0.5)
         I = new Exp2Syn(0.5)
         I.e = -80
       }
     }
   endtemplate Cell
   objref bag_of_cells
   bag_of_cells = new List()
   for i = 1,1000 bag_of_cells.append(new Cell())
```


Connecting cells For a net distributed over multiple CPUs, it is most efficient to iterate over targets first. for each cell { connect sources to this cell }

√(.5)

soma vvec.play(&SEClamp[0].amp1, tvec, 1)

Parallel Computation

"Faster" is the only reason

But...

greater programming complexity new kinds of bugs ...and not much help for fixing them.

Can the day or week of user effort be recovered?

16384 core EPFL IBM BlueGene/P 1 hour at 850MHz 6 months at 3GHz

Parallel Computation

A simulation run takes about a second

want to do 1000's of them,

varying a dozen or so parameters.

- Screensaver Calin–Jageman and Katz, 2006
- Bulletin–board (Linda)

A simulation run takes hours.

want to spread the problem over several machines.

A simulation run takes hours.

want to spread the problem over several machines.

Network

Subnets on different machines

Cells communicate by:

logical spike events with significant axonal, synaptic delay.

postsynaptic conductance depends continuously on presynaptic voltage.

gap junctions

Parallel Computation

A simulation run takes hours.

want to spread the problem over several machines.

Single cells

portions of the tree cable equation on different machines.

nc = new NetCon(PreSyn, PostSyn)

pc = new ParallelContext()

Every spike source (cell) must have a global id number.

CPU 0	CPU 3	CPU 4
pc.id 0 pc.nhost 5 ncell 14	pc.id 3 pc.nhost 5 ncell 14	pc.id 4 pc.nhost 5 ncell 14
gid 0 5 10	gid 3 8 13	gid 4 9

An efficient way to distribute:

```
for (gid = pc.id; gid < ncell; gid += pc.nhost)
        pc.set_gid2node(gid, pc.id)
        ...
}</pre>
```

body executed only ncell/nhost times, not ncell.

Create cell only where the gid exists.

```
if (pc.gid_exists(7)) {
    PreCell = new Cell()
}
```


Associate gid with spike source.

nc = new NetCon(PreSyn, nil)
pc.cell(7, nc)

Create NetCon on CPU where target exists.

nc = pc.gid_connect(7, PostSyn)

Run using the idiom

pc.set_maxstep(10)
stdinit()
pc.psolve(tstop)

pc.set_maxstep() uses MPI_Allreduce to determine minimum delay.

2015

Migliore et al (2006) J. Comput. Neurosci. 21(2):119

Continuous Voltage Exchange

Continuous Voltage Exchange

pc.source_var(&source_var, sgid)

Continuous Voltage Exchange

pc.source_var(&source_var, sgid)

Continuous Voltage Exchange

Scripting NEURON with Python

Robert A. McDougal

Yale School of Medicine

16 October 2015

Why write scripts?	Introduction to Python	Basic NEURON scripting	Advanced topics	More information
••				
What is a script				

What is a script?
A script is a file with computer-readable instructions for performing a
task.

VEURON

In NEURON, scripts can: set-up a model, define and perform an experimental protocol, record data, \ldots

Why write scripts for NEURON?

- Automation ensures consistency and reduces manual effort.
- Facilitates comparing the suitability of different models.
- Facilitates repeated experiments on the same model with different parameters (e.g. drug dosages).
- Facilitates recollecting data after change in experimental protocol.
- Provides a complete, reproducible version of the experimental protocol.

Why write scripts?	Introduction to Python	Basic NEURON scripting	Advanced topics	More information O

Introduction to Python

Why write scripts? OO	Introduction to Python	Basic NEURON scripting	Advanced topics	More informatio
Python basics: printing a	nd variables			
Displayin	ng results			
The prim	nt command is use	ed to display non-graph	ical results.	
It can di	splay fixed text:			
	nt ('Hello ever	yone.')	Hello ever	yone.
or the re	sults of a calculation	on:		
pri	nt (5 * (3 + 2))		25
· · ·				
Storing r	esults			
Give valu	ues a name to be a	ble to use them later.		
a	$= \max([1.2, 5.2$, 1.7, 3.6])		
pr	int (a)			5.2

duction to Duth

In Python 2.x, print is a keyword and the parentheses are unnecessary. Using the parentheses allows your code to work with both Python 2.x and 3.x.

rite scripts?	Introduction to Python ○●○○	Basic NEURON scripting 000000000000000000000000000000000000	Advanced topics	More inform O
Using lit				
Libraries To load		hon) provide features s prt:	cripts can use.	
	notation to access .nt (math.cos(ma	a function from the mo th.pi / 3))	odule:	0.5
For NEU	also load specific i IRON, we often wa om neuron import			
Other m	odules			
(like NE	URON). Useful one	umber of modules, and s for neuroscience inclu d math), matplotlib	ude: math (basio	c math

(3D graphics), pandas (analysis and databasing),

Why write scripts? OO Getting help	Introduction to Python	Basic NEURON scripting	Advanced topics 0000000000	More information O
Finding	halo other			
	help within Python	tc in a module (or clas	s) uso dir:	
ir pi	nport numpy rint (dir(numpy)	, , , , , , , , , , , , , , , , , , ,	s) use all.	
'asin'	c', 'name' , 'asinh', 'atan	, 'package', ' ', 'atan2', 'atanh sh', 'degrees', 'e	', 'ceil',	' ,
	nelp information for lp(math.cosh)	a specific function, use	e help:	

Why write scripts?	Introduction to Python	Basic NEURON scripting	Advanced topics	More information
00	0000			
Getting help				

Online resources

Python is widely used, and there are many online resources available, including:

- docs.python.org the official documentation
- Stack Overflow a general-purpose programming forum
- the NEURON programmer's reference NEURON documentation
- the NEURON forum for NEURON-related programming questions

If no position is specified, then the 0-end will be connected to the 1-end as in the example

ny write scripts? D c tions	Introduction to Python 0000	Basic NEURON scripting OO●O0000000000000000000000000000000000	Advanced topics	More informatio
xample				
_				
Python sc	ript:	Output:		
from neuron	import h	1-1	soma(0-1)	
# define se		4	proxApical(()-1)
	ction(name='soma')		apic1(0-1)	
	<pre>ection(name='proxApical ection(name='apic1')</pre>	·) (]	apic2(0-1)	
	ection(name='apic2')	۱ ۱	proxBasal(0-1)	
	ion(name='proxBasal')	۱ ۲	distBasal1(0-1)	
	<pre>tion(name='distBasal1') tion(name='distBasal2')</pre>	1	•	
ub2 - 11.5ec	LION(NAME- GIStBasal2)	'	distBasal2(()-1)
# connect t	nem			
papic.conne		Marphala	<i>~ u</i>	
pb.connect(apic1.conne		Morpholo	gy.	
apic2.conne				
db1.connect		distBasal2		nic2
db2.connect	(pb)	- asal2		ab
# ligt tong	logu	distBasal1 prox	Basal soma proxApio	cal apica
<pre># list topo h.topology()</pre>		dist		S/ 1

2015

Why write scripts? Introduction to Python 00 0000 Sections	Basic NEURON scripting Advanced topics OOO●●000000000000000000000000000000000	More information O
Reduce work by writing f	inctions	
Python script: from neuron import h	Output:	
<pre># helper functions def sections(*names): secs = [h.Section(name=n) for n in names] return tuple(secs) def connect(connections): for parent in connections: for child in connections[parent)</pre>	<pre> - soma(0-1)</pre>	-1) -1) -1) 1(0-1)
<pre># define, connect, print soma, papic, apic1, apic2, pb, db1, sections('soma', 'proxApical', 'apic2', 'proxBasal', 'distBasal1', 'distBasal'</pre>	^{apic1',} Morphology:	
<pre>connect({soma: [papic],</pre>	distBasal proxBasal soma prox	Apical apic2
h.topology()		

Why write scripts?	Introduction to Python	Basic NEURON scripting	Advanced topics	
		000000000000000000000000000000000000000		
Morphology				

Length and diameter				
Set a section's length (in μ m) with .L and diameter (in μ m) with .diam: sec.L = 20				
<pre>sec.diam = 2</pre>				
Note: Diameter need not be constant; it can be set per segment.				
To specify the $(x, y, z; d)$ coordinates that a section passes through, use $h.pt3dadd$.				
Warning: the default diameter is based on a squid giant axon and is not appropriate for modelling mammalian cells.				

Note: PlotShape can also be used to see the distribution of a parameter or calculated variable. To save the image in plot shape ps use ps.printfile('filename.eps')

Setting and reading parameters Setting and reading parameters

In NEURON's coordinate system, each section has normalized positions from 0 to 1.

Basic NEURON

To read the value of a parameter defined by a range variable at a given normalized position use: section(x).MECHANISM.VARNAME e.g.

gkbar = apical(0.2).hh.gkbar

Setting variables works the same way:

apical(0.2).hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken into (each potentially with their own value for range variables), use section.nseg:

apical.nseg = 11

л

00	rite scripts? Introduction to Python Basic NEURON scripting Advanced topics More info 0000 00000000000000000000000000000000	rmation
lon cha	nnels	
	Distributed mechanisms	
	Use .insert to insert a distributed mechanism into a section. e.g. axon.insert('hh')	
	Point processes	
	To insert a point process, specify the segment when creating it, and save the return value. e.g. pp = h.IClamp(soma(0.5))	
	To find the segment containing a point process pp, use seg = pp.get_segment()	
	The section is then seg.sec and the normalized position is seg.x.	
	The point process is removed when no variables refer to it.	
	Use List to find out how many point processes of a given type have been defined:	
	<pre>all_iclamp = h.List('IClamp') print ('Number of IClamps:') print (all_iclamp.count())</pre>	

Why w 00	rite scripts? Introduction to Python	Basic NEURON scripting	Advanced topics	More information O
Simulat	tion			
Ru	nning simulations			
	<u> </u>			
	Basics			
	To initialize a simulation to -6	65 mV:		
	h.f.	initialize(-65)		
	To run a simulation until $t =$	50 ms:		
	h.c	continuerun(50)		
	Additional h.continuerun ca	alls will continue from	n the last time.	
	Ways to improve accuracy			
	Reduce time steps via, e.g. h Enable variable step (allows e Increase the discretization res	rror control): h.CVo		
	To increase nseg for all section for sec in h.allsec()		c.nseg * 3	

Vhy write scripts? OO lecording data	Introduction to Python 0000	Basic NEURON scripting 000000000000000000000000000000000000	Advanced topics 0000000000	More information O
Recording	g data			
time cou	· · · ·	ges over time, create a	Vector to store	e the
and do a	.record with the	last part of the name	prefixed by _ref	:
-	ecord soma(0.3).i a.record(soma(0			
Tips				
		href_t to know the d before h.finitiali	, 0	imes.

Why write scripts?	Introduction to Python 0000	Basic NEURON scripting ○○○○○○○○●●○○○○○	Advanced topics	More information O
Example: Hodgkin-Huxle	Hodgkin-Hu	xley		
from matple				
<pre># current d i = h.IClan i.delay = 2 i.dur = 0.1 i.amp = 50</pre>	np(soma(0.5)) 2 # ms	40 20- 0 -20-		
<pre># recording t = h.Vecto v = h.Vecto t.record(h v.record(so</pre>	or() or()		20 30 40	50
<pre># simulation h.finitial: h.continues</pre>	ize()			
<pre># plotting pyplot.plot pyplot.show</pre>	t(t.as_numpy(), v.as_ v()	numpy())		

2015

The CSV format is widely supported by mathematics, statistics, and spreadsheet programs and offers an easy way to pass data back-and-forth between them and NEURON.

In Python, we can use the csv module to read and write csv files.

Adding the following code after the continuerun in the example will create a file data.csv containing the course data.

```
import csv
with open('data.csv', 'wb') as f:
    csv.writer(f).writerows(zip(*(t, v)))
```

Each row in the file corresponds to one time point. The first column contains t values; the second contains v values. Additional columns can be stored by adding them after the t, v.

For more complicated data storage needs, consider the pandas or h5py modules. Unlike csv, these must be installed separately.

Interspike intervals (ISIs) are the delays between spikes; that is, they are the differences between consecutive spike times.

To display ISIs for the previous example, we add the lines:

```
isis = [next - last for next, last in zip(st[1:], st[:-1])]
print ('ISIs:'); print (isis)
```

The result:

[24.9749999999998925, 13.47500000001966]

That is, the delays between spikes were 24.975 ms and 13.475 ms.

HOC was NEURON's original programming language. There are many valuable HOC functions in ModelDB and elsewhere. Python scripts can easily use these functions via a two step process:

Load the HOC library, here libraryname.hoc:

h.load_file('libraryname.hoc')

Invoke the HOC function, here test by proceeding its name with an h. and passing the appropriate arguments:

h.test(13, 172.2)

SES files created by saving the session are written in HOC and may be loaded the same as with any other HOC file.

Why write scripts? 00 Interacting with HOC Example	Introduction to Python 0000	Basic NEURON scripting 000000000000000000000000000000000000	Advanced topics 0000000000	More information O
HOC code	e: myneuron.hoc	Python so	cript:	
create soma { con con L =	<pre>ne a cell soma, apic, bas; mect apic(0), 1 mect basal(0), 0 20 m = 20</pre>	al h.load h.topol	euron import h _file('myneuro logy()	

Running the Python script shows:

-	soma(0-1)
'	apic(0-1)
'	basal(0-1)

Some NEURON functions depend on the section; specify that with a $\ensuremath{\texttt{sec=}}\xspace$ argument.

Example: calculating path distance
For example, h.distance is used to calculate the path distance in μ m between two points along the neuron. To set a reference point at the center (0.5) of the soma, use:
h.distance(0, 0.5, sec=soma)
The distance from the reference point to the 1 end of apic is
h.distance(1, sec=apic)

Copyright © 1998-2015 N.T. Carnevale and M.L. Hines, all rights reserved

Why write scripts? 00	Introduction to Python 0000	Basic NEURON scripting	Advanced topics	More information O
	۸	duanced tenior		
	A	dvanced topics		
Why write scripts?	Introduction to Python	Basic NEURON scripting	Advanced topics	More information
00 Version Control	0000	000000000000000000000000000000000000000	•••••	0
Version co	ontrol: git			

Why use version control?

- **Protects against losing working code**: if something used to work but no longer does, you can test previous versions to identify what change caused the error.
- Provides a record of script history: authorship, changes, ...
- **Promotes collaboration**: provides tools to combine changes made independently on different copies of the code.

View list of changes

git log

Remove a file from tracking

git rm FILENAME

Rename a tracked file

git mv OLDNAME NEWNAME

git (and mercurial) is a distributed version control system, designed to allow you to collaborate with others. You can use your own server or a public one like github or bitbucket.

Download from a server

git clone http://URL.git

Get changes from server and merge with local changes

git pull

Sync local, committed changes to the server

git push

One simple way to ensure you always know what version of the code generated your data is to include the git hash in the filename. The following function can help:

```
def git_hash():
    import subprocess
    suffix = ''
    if subprocess.check_output(['git', 'diff']):
        suffix = '+'
    return '%s%s' % (subprocess.check_output([
            'git', 'log', '-1', '--pretty=format:%h']),
        suffix)
```

Then, for example, save matplotlib graphics with: pyplot.savefig('filename_' + git_hash() + '.pdf')

Place your GUI commands in a class to allow independent reuse.

Combine windows horizontally with HBox and vertically with VBox.

```
from neuron import h, gui
hbox = h.HBox()
hbox.intercept(1)
h.xpanel('Example 1')
h.xlabel('Hello class')
h.xbutton('Click me')
h.xpanel()
h.xpanel()
h.xpanel()
h.xpanel()
h.xpanel()
hbox.intercept(0)
hbox.map()
```

	ON
Close I	Hide
Hello class	Say hello
Click me	

Note: HBox and VBox can contain: H/VBox, Deck, xpanel, Graph, ...

Complicated layouts can be constructed using nested VBox and HBox objects:

For more background and a step-by-step guide to creating a network model, see the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython/index.html

General issues

- Karl Popper in The logic of scientific discovery, 1959.

What is needed for a model to be reproducible?
Model
 an approximation of the system of interest e.g. a model organism or a complete statement of the properties of the model in mathematical or computable form
Experimental protocol
 what was done with the model to produce the data

Science builds upon previous work; in order to do that, the previous work needs to be reproducible.

• Any bugs, typos, errors, or omissions might completely change the dynamics.

Distributions from ModelDB, Fall 2013. A model was counted as having 0 files if it was not hosted on ModelDB.

Stay up to date O

Model sharing helps, but only reuse what you understand

Other resour

ModelDB 0000000000000

The easiest way to replicate someone else's results – a first step toward building on them – is to get their model code from a repository such as ModelDB.

But beware:

General issues

- They may be solving a different problem than you (with respect to species, temperature, age, etc).
- Their code may have bugs.

To reduce the risk of problems:

- Read the associated paper.
- Compare the model and results to other similar models.
- Examine the model with ModelView and/or psection.
- Test ion channels individually.
- Collaborate with an experimentalist.

General issues 0000	ModelDB ●0000000000	Other resources	Stay up to date O
	Model Part of the Sense		

General i 0000		Mode O●C	eIDB	Other resources 0000000			
	search Q Advanced search	SenseLab		ModelDB	SimTaalDB		
	ModeIDB Help User account Login Register		ModelDB is tightly coupled with Ne	e location for storing and efficiently retrieving computational neurosc urmoDB. Models can be coded in any language for any environment. Mod wears can be set to auto-launch the models. For further information, see	el code can be		
	Find models by Model name		in general and ModelDB in particu				
	First author Each author		Search				
	Region(circuits)						
	Find models for Cell type		Use the "search" box in the u • by accession number	pper left corner to find model entries			
	Current		 by a particular author 	and a second as a feature (Mars for the standard at a)			
	Receptor		 by keyword (cell type, i use advanced search f 	egion, receptor, gene, transmitter, topic, simulator) or ion currents: because these are short they are problematic to search with	he, transmitter, topic, simulator) ause these are short they are problematic to search with free text		
	Gene		 use advanced search f prefix case sensitive w 	or a combined keyword and full text search			
	Transmitters		 use * for completions 				
	Topic		Or you may search for public	ations indexed in ModelDB or PubMed.			
	Simulators						
	Methods						
	Find models of Networks						
	Neurons		New Model				
	Electrical synapses (gap junctions)			Submit a new model entry			
	Chemical synapses			Video tutorial			
	Ion channels						
	Neuromuscular junctions						
	Axons						
	Other resources						
	ModelDB related resources		Tallau .	ModelDB Home SenseLab Home Help			
	Models in mercurial repository		@SenseLabProject	How to cite ModelDB ModelDB Credits			
			modeld	o This also is Copyright 2015 Shepherd Lab. Yala University			

General issues	ModelDB	Other resources	Stay up to date
0000	OO⊕OOOOOOOO	0000000	O
What is in M	lodelDB?		

Models for:

- 176 cell types
- 19+ species
- 52 ion channels, pumps, etc
- 129 topics (Alzheimer's, STDP, etc)

1052 published models from 70+ simulators

• 509 NEURON models

Numbers are as of September 25, 2015

eneral issues	ModelD 0000)B 000000000	Other resources	Stay up to date O
-inding m	odels			
hir hir Hil Hil E E Tr N E D R E D C C	af fi-fi-h tes titon.hoc tit tithors enes ML enes ML fil Type intorhinal cortex stellate ce egion ntorhinal cortex stellate ce egion ntorhinal cortex stellate ce egion orephinephrine phinephrine phinephrine ynorphin cocepto	ell Ar Construction Constructio	fiew all Ifactory Mitral Cell (Shen et al 1999) rteriolar networks: Spread of potential (Crane et al 2001) Ifactory Mitral cell: AP initiation modes (Chen et al 2002) ocal variable time step method (Lytton, Hines 2005) Ifactory bulb mitral cell: synchronization by gap junctions Migliore et al 2005) iiscrete event simulation in the NEURON environment (Hines nd Carnevale 2004) patial gridding and temporal accuracy in NEURON (Hines and arnevale 2001)	
Т	utorial/Teaching			

- Search box on the top-left of every page. ۲
 - Do full text or attribute searches.
- Word completions (based on ModelDB entries not English) and attribute results updated as ۲ you type.
- Advanced search and browsing are also available.

ModelDB 00000000000000 Anatomy of a ShowModel page

- (1) Search models.
- Browse models.
- (3) Description of model.
- (4) Paper(s) describing or using model.
- (5) Find models and papers cited by this model's paper, or that cite this model.
- (6) Searchable metadata.
- Links to NeuronDB (channel (7) distributions etc within cell types).
- (8) Link to download the entire simulation.
- Auto-launch a NEURON simulation (9) (requires browser configuration).
- (10) Simulation platform (5 minutes of remote desktop access to experiment with the model).
- (11) ModelView: visualize model structure.
- (12) 3D printable versions of cells from the model (in 3DModelDB).
- (13) Directory browser, showing model files.
- (14) View pane for the currently selected file.

Asterisks in the file browser indicate that the file is reused in other models; click the asterisk to see a list of the other models.

General issue 0000		ModelDB 000000●00000	Other resources	Stay up to date O
Mode	elView			
	search Q Advanced search	(Binneta)	ModelDXB	28
	ModelDB Help User account Login	Amyloid beta (IA block) effec	ts on a model CA1 pyramidal cell (Morse et al. 20	10)
	Register Find models by Model name First author Each author	transient K+ channel, IA. See paper for details.	s in CA1 pyramidal neurons are susceptible to hyper-excitability by amyloid e M, Shepherd GM (2010) Abnormal excitability of oblique dendrites implicat 4:16 <u>Publica</u>	
	Region(circuits) Find models for	Citations <u>Citation Browser</u> Model Information (Click on a link to find other models)	with that property)	
	Cell type Current Receptor Gene Transmitters	Model Type: <u>Neuron or other electrically e</u> Brain Region(s)/Organism: Cell Type(s): <u>CA1 pyramidal neuron</u> ; Channe(s): <u>Na.t: IL high threshold; IN</u> : Gap Junctions: Receptor(s):		
	Topic Simulators Methods Find models of Networks	Gene(s): Transmitter(s): Simulation Environment: <u>NEURON:</u> Model Concept(s): <u>Dendritic Action Potentials</u> ; A	clive Dandrites: Detailed Neuronal Models: Pathophysiology: Aging/Alzheim le at Yale.edu): Morse. Tom (Tom Morse at Yale.edu):	<u>or's:</u>
	Neurons Electrical synapses (gap junctions)	Search NeuronDB for information about: CA1 pyramida Model files Download zip file Simulation Platt	I neuron: INa.t: IL high threshold: IN: IT low threshold: IA: IK: Ih: Orm ModeWew Help downloading and running models	
	Chemical synapses Ion channels Neuromuscular junctions Axons	©j This is © CA1 abeta © translate Abnorma	A Carnevale NT, Figure 3 A Carnevale NT, Figure 3 A Carnevale NT, Figure 3 A Carnevale NT, Figure 4 A Carnevale NT, Fi	2
	Other resources ModelDB related resources Models in mercurial repository	D fig1.jpg D fig2.jpg The mode D fig3.jpg	Figure 5 in Norse. It was created of the figure 5 in Norse. It was created of a data in the figure 6 in Norse. It was created of a data (specially Migliore et a data) with the figure 6 in th	(500

Adapted from McDougal et al, Neuroinformatics 2015 (online ahead of print)

McDougal et al, Neuroinformatics 2015 (online ahead of print)

McDougal et al, Neuroinformatics 2015 (online ahead of print)

McDougal et al, Neuroinformatics 2015 (online ahead of print)

	0000000	0
Morse et al. 2010 - @	Morse et al. 2010 - @ (Hemond et al. 2008)	
ModelDB models Cagk.mod A model of unitary responses from A/C and PP synapses in CA3. pyramidal cells (Baker et al. 2010) CA1 pyramidal neuron: effects of R213Q and R312W KV7.2 mutations (Miceli et al. 2013) CA3 pyramidal neuron (Safulina et al. 2010) CA3 pyramidal neuron: firing properties (Hemond et al. 2008) distr.mod can2.mod cat.mod pipulse2.mod	 distr.mod cal2.mod cal2.mod cac.mod ipulse2.mod ipulse2.mod ipulse2.mod maxn.mod References Paper in Eront. Neural Circuits ModelDB Entry Run Protocol Compiling C CA1_abeta nmivmodl Launching NEURON nrngui -python Running from neuron import h h.load_file("mosinit.hoc") 	

McDougal et al, Neuroinformatics 2015 (online ahead of print)

How do people use ModelDB?

ModelDB 000000000000

- Find a model described in a paper, download it, and experiment to understand the model's predictions.
- Find a model described in a paper. Use ModelView to understand the model's structure.
- Locate models and modeling papers on a given topic.
- Locate model components (e.g. L-type calcium channel) for potential reuse.
- Search for simulator keywords (e.g. FInitializeHandler) to find examples of how to use them.

You can help by sharing your model code on ModelDB after publication.

General issues 0000	ModelDB 00000000000	Other resources O●00000	Stay up to date O
NeuroMor	pho.Org		
Versio	anization anization al) Animation sature		V V Verse South Verse South Verse South Verse Ver
	Neuron Name : R4		
	Archive Name : Lewis Species Name : Human	Tools \blacktriangleright Miscellaneou	s ▶Import 3D

- NeuroMorpho.Org is home to 31,982 reconstructed neurons from 140 cell types and 24 species as of September 24, 2015.
- Warning: not every morphology was reconstructed with the intent of being in a simulation. Before using: rotate to check for z-axis errors, check to make sure the diameters are not all equal.
- Use the Import 3D tool to import morphologies into NEURON. For details, see: neuron.yale.edu/neuron/docs/import3d

General issues 0000	ModelDB 00000000000	Other resources 0000000	Stay up to date O
Chann	elpedia (Channelpedia.ep	ofl.ch)	
end of the second	Control Control <t< th=""><th> about ior Many cha one or m associate (e.g. diffe species or </th><th>ore d models erent r cell types); wnloadable</th></t<>	 about ior Many cha one or m associate (e.g. diffe species or 	ore d models erent r cell types); wnloadable
	Image: State Stat	 Shows ga variable a 	ating and channel to voltage

• Open Source Brain promotes collaborative model development via github.

al GENE

 Models are typically in NeuroML or neuroConstruct format; neuroConstruct (neuroConstruct.org) converts both formats to NEURON.

sion of the c

• The conversion process places different ion channels in different MOD files, which allows extracting model components.

r J. M. (1994) Br

d on Arnd Roth el al's co

- NeuroElectro archives experimentally measured electrophysiology values for different cell types; it shows the spread and allows comparing values across different cell types.
- Read the paper associated with a value to understand: species, experimental conditions, etc.

General issues 0000		delDB 0000000000		Other resou		tay up to date)	
SenseLab (senselab.med.yale.edu)							
HeaterDI	Back Overview Data/S		uronDI es/Notes	Models BrainPh		er Public	
	Hippocampus CA1 pyramidal cell Are: Present Absert Organism ExecutoPhysicology Busicolise13 ExecutoPhysicology Busicolise13 ExecutoPhysicology Busicolise13 ExecutoPhysicology Busicolise13 ExecutoPhysicology Busicolise13 ExecutoPhysicolise13 ExecutoPhysico						
Statement	Connectivity: Live o	onnectivity specified by colored boxes. Dark yellow: distant cor Input Receptors			Output Transmitters		
	Distal apical dendrite	Hippocampus CA1 oriens alveus interneuron Axon terminal.	AMPA	LNa.t LT low threshold LA LN Lhigh threshold Lp.q Lh			
BrainPharm	Middle apical dendrite	Hippocampus CA1 oriens alveus interneuron.Axon terminal. Hippocampus CA1 oriens alveus interneuron.Axon terminal. Hippocampus CA3 pyramidal cell Axon terminal.Glutamate		I Na.t I T low threshold I Potassium			

- SenseLab is a suite of 10 interconnected databases (listed at left).
- ModelDB and NeuronDB (at right) are the most useful for modeling.
- NeuronDB shows what channels are present and the inputs and outputs *by cell region* (e.g. distal apical dendrite vs proximal apical dendrite).

Twitter

Many repositories announce new developments on Twitter, including:

- SenseLab (including ModelDB): @SenseLabProject
- Open Source Brain: **OSBTeam**
- NeuroMorpho.Org: @NeuroMorphoOrg

Getting Started

Getting Started	Examples	Notes	3D Simulations	References
When should I use the reaction-diffusion			000	
What does the	rxd module o	do?		
Reduces typing				
diffuse and all	declare a domain, respond to flux fro = rxd.Region(h.a = rxd.Species(all,	om ion chann llsec(), nrn_r	egion='i')	g it to
• Reduces th	e risk for <mark>errors</mark> fr	om typos or	misunderstandings.	

Allows arbitrary domains

NEURON traditionally only identified concentrations just inside and just outside the plasma membrane. The rxd module allows you to **declare your own regions** of interest (e.g. ER, mitochondria, etc).

Getting Started	Examples 00000000	Notes OO	3D Simulations 000	References
How do I use the rxd module?				
The three quest	ions			

- Where do the dynamics occur?
 - Cytosol
 - Endoplasmic Reticulum
 - Mitochondria
 - Extracellular Space
- Who are the actors?
 - Ions
 - Proteins
- What are the reactions?
 - Buffering
 - Degradation
 - Phosphorylation

Getting Started ○○○○●○○○○○○○○○○○○	Examples 00000000	Notes OO	3D Simulations 000	References
Declare a region	with rxd.Re	egion		
			geometry:	
Basic Usage				
cyt = rxd.Regic	on(seclist) sections; e.g. a SectionList or a	Python list.	rxd.inside	
Identify with a cvt = rxd .Region	standard region on(seclist, nrn_reg	ion='i')	rxd.membran	e
nrn_region may be i or o, com	responding to the locations of e.	g. nai vs nao.	rxd.Fractiona	Nolumo(
cyt = rxd.Regional regional	•		volume_fra	iction=f ₁ ,
The default geometry is rxd.i	geometry=rxd.She nside. arguments may both be specific	· //	Adapted from: McDougal et al 2013.	, r ₂ /R)

Specify nrn_region if concentrations interact with NMODL

If NMODL mechanisms (ion channels, point processes, etc) depend on or affect the concentration of a species living in a given region, that region must declare a nrn_region (typically $^{1}i^{1}$).

Basic usage	
$\begin{array}{l} \mbox{protein} = rxd.Species(region, \ d{=}16) \\ \mbox{d} \ is \ the \ diffusion \ constant \ in \ \mu m^2/ms. \ region \ is \ an \ rxd.Region \ or \ an \ iterable \ of \ rxd.Region \ objects. \end{array}$	
Initial conditions	
protein = rxd.Species(region, initial=value) value is in mM. It may be a constant or a function of the node.	
Connecting with HOC	
$\label{eq:ca} ca = rxd.Species(region, name='ca', charge=2) \\ If the nrm_region of region is "i", the concentrations of this species will be stored in cai, and its concentrations will be affected by ica.$	

Getting Sta	rted	Examples	Notes	3D Simulations	
0000000	0000000000				
How do I us	se the rxd module?				
Spec	ifying dynan	nics: rxd.Re	eaction		
N	lass-action kinetic	cs			

 $\begin{array}{l} {\rm ca + buffer} \xleftarrow{kf}{kb} {\rm cabuffer} \\ {\rm buffering} = {\rm rxd.Reaction(ca + buffer, cabuffer, kf, kb)} \\ {\rm kf} {\rm is the forward reaction rate, kb is the backward reaction rate. kb may be omitted if the reaction is unidirectional.} \\ {\rm In a mass-action reaction, the reaction rate is proportional to the product of the concentrations of the reactants.} \end{array}$

Repeated reactants

 $2H + O \xleftarrow{kf}{kb} H2O$ water_reaction = rxd.Reaction(2 * H + O, H2O, kf, kb)

Arbitrary reaction formula, e.g. Hill dynamics

 $\begin{array}{l} a+b \longrightarrow c \\ \mbox{hill_reaction} = \mbox{rxd.Reaction}(a+b,\mbox{ c},\mbox{ a}\ ^2\ /\ (a\ ^2\ +\ k\ ^2), \\ \mbox{mass_action} = \mbox{False}) \\ \mbox{Hill dynamics are often used to model cooperative reactions.} \end{array}$

Getting a list of nodes • nodelist = protein.nodes

Filtering a list of nodes

- nodelist2 = nodelist(region)
- nodelist2 = nodelist(0.5)
- nodelist2 = nodelist(section)(region)(0.5)

Other operations

- $\bullet \ \ {\sf nodelist.concentration} = {\sf value}$
- values = nodelist.concentration
- surface_areas = nodelist.surface_area
- volumes = nodelist.volume
- node = nodelist[0]

Reaction-diffusion dynamics can also be specified via the GUI. This option appears only when rxd is supported in your install (Python and scipy must be available).

Getting Started	Examples	Notes	3D Simulations	References
000000000000000000000000000000000000000				
How do I use the rxd module?				
GUI				

from neuron import h, rxd, gui
h('create soma') soma_region = rxd.Region([h.soma], nrn_region='i')
<pre>ca = rxd.Species(soma_region, initial=1,</pre>
<pre>buffering = rxd.Reaction(2 * ca + buf, cabuf, 1, 0.1)</pre>
In this example, we suppose each

In this example, we suppose each buffer molecule binds two molecules of calcium. Other buffers have different properties. Use the GUI to create a graph and run the simulation.

The ER membrane:

Getting Started 000000000000000000 Calcium wave	Examples ○○○●○○○○	Notes OO	3D Simulations 000	References
Calcium wave				
There are two	species:			
Calcium				
_	nit(node): rn ca_cyt0 if no	ode.region =	== cyt else ca_er	-0
ca = rxd	.Species([cyt, e	er],		
	d=caDii	ff,		
	name='o	ca',		
	charge=	=2,		
	initia	l=ca_init)		
	111010			
Inosital trisph	osnhata (IP3)			

Inositol trisphosphate (IP3):

Getting Started	Examples	Notes	3D Simulations	References
	00000000			
Calcium wave				

Each pump and channel corresponds to its own "reaction":

Leak:

```
leak = rxd.MultiCompartmentReaction(
    ca[er] <> ca[cyt],
    gleak,
    gleak,
    membrane=er_membrane)
```

SERCA:

```
serca = rxd.MultiCompartmentReaction(
    ca[cyt] > ca[er],
    gserca * (ca[cyt])**2 / (Kserca**2 + (ca[cyt])**2),
    membrane=er_membrane,
    mass_action=False)
```


More closely spaced $\mathsf{IP}_3\mathsf{R}\longrightarrow$

Increasing SERCA activity \longrightarrow

node._ref_concentration or node._ref_value returns a pointer.

Recording traces

$$\label{eq:v} \begin{split} v &= h.Vector() \\ v.record(ca.nodes[0]._ref_concentration) \end{split}$$

Plotting

 $\begin{array}{l} g = h.Graph() \\ g.addvar('ca[er][dend](0.5)', \\ ca.nodes(er)(dend)(0.5)[0]._ref_concentration) \\ h.graphList[0].append(g) \end{array}$

3D Simulations

 2 rxd.set_solve_type can optionally take a list of sections as its first argument; in that case only the specified sections will be simulated in three dimensions.

References

Getting Started	Examples	Notes	3D Simulations	References
00000000000000000	00000000	00	000	
For more inform	nation see			
	lation, see.			

Journal Articles on Reaction-Diffusion in NEURON

- McDougal, R. A., Hines, M. L., Lytton, W. W. (2013). Reaction-diffusion in the NEURON simulator. *Frontiers in Neuroinformatics*, 7.
- McDougal, R. A., Hines, M. L., Lytton, W. W. (2013). Water-tight membranes from neuronal morphology files. *Journal of Neuroscience Methods*, 220(2), 167-178.

Online Resources

- NEURON Forum
- Programmer's Reference
- NEURON Reaction-Diffusion Tutorials

Receipt

Received: \$150

From:

- For: Using the NEURON Simulation Environment Held Oct. 16, 2015 in Chicago, IL http://www.neuron.yale.edu/neuron/static/courses/chi2015/chi2015.html
- **By:** N.T. Carnevale Director, Using the NEURON Simulation Environment 203-494-7381 ted.carnevale@yale.edu

For deposit in: Yale University account "NNC--Fees"

Survey

We'd appreciate your frank opinions and suggestions to help us refine this course and design future offerings on related subjects.

Please score these	 according to this scal	е
Overall impression	 no opinion	0
Relevance to my research	poor, not helpful	1
Didactic presentations	fair	2
Written handouts	 good	3
Overhead transparencies	 excellent, very helpful	4
Computer projection		
Classroom		
Food		
Best feature		
Weakest feature		

Additional topics that should be covered, topics that should receive more or less coverage, or other suggestions for improvement.

Circle one

Y N I would recommend this course to others who are interested in neural m
--

- Y N I have developed my own modeling software using a high-level language (FORTRAN, C/C++, Python etc.).
- Y N I have created my own models using modeling software.

Which software?

My primary area of research interest is _____

To help us better meet the needs of NEURON users, please circle all platforms that you plan to use for modeling.

Hardware		Mac	PC	Other .	
OS	MacOS X		Win Vista 7 8		8 9 UNIX Linux OS X BSD

If Linux, which distribution?