The NEURON Simulation Environment

NTC
WWL
RAM

Table of Contents and Schedule of Presentations

Ted Carnevale
Bill Lytton
Robert McDougal

Hands-on exercises are indicated by an asterisk * in the Page column.
Times shown are approximate, except for lunch.

Monday, 6/10 Morning session

Time
9:00 AM

10:30
10:45

12:00

Speaker Title

NTC Welcome to the NEURON summer course
Installing and configuring NEURON

NTC Introduction to modeling

GUI: building and using a simple model
Neurites, cables, and sections

Coffee Break

NTC Interactive modeling: Hodgkin-Huxley axon

Lunch

Afternoon session

1:00
2:00

3:00
3:15
4:45
5:00

NTC Range, range variables, nodes, and nseg

NTC Constructing branched model cells
with the CellBuilder

Coffee Break

RAM Python + NEURON
Daily wrapup

End of afternoon session

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Didactic Presentations

Page

11 *
13

15 *

17
21 *

25 *

Page 1

Didactic Presentations The NEURON Simulation Environment

Tuesday, 6/11 Morning session

Time Speaker Title Page
9:00AM Q&A

9:15 NTC Channel Builder 45
10:30 Coffee Break

10:45 RAM Working with morphometric data 53 *

12:00 Lunch

Afternoon session

1:00 NTC NMODL: the NEURON Model Description 61 *
Language

2:00 RAM ModelDB and Model View 69 *

3:00 Coffee Break and Free time

3:15 RAM Building a model cell

4:45 Daily wrapup

5:00 End of afternoon session

Evening session

7:00 Hands-on exercises, personal projects, and special topics

Wednesday, 6/12 Morning session

Time Speaker Title Page
9:00AM Q&A

9:15 RAM Reaction-diffusion 89 *
10:30 Coffee Break

10:45 NTC Inhomogeneous channel distributions 115 *

12:00 Lunch

Page 2 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Afternoon session

1:00 NTC/RAM Families of simulations in parallel 119 *
2:45 Coffee Break
3:00 Matthew Johnson: Neurostimulation for treament of
movement disorders and paralysis
4:45 Daily wrapup
5:00 End of afternoon session

Thursday, 6/13 Morning session

Time Speaker Title Page
9:00AM Q&A

9:15 RAM Numerical methods: accuracy, stability, speed 125
10:30 Coffee Break

10:45 NTC Networks: synapses, events, 139

and artificial spiking cells
12:00 Lunch

Afternoon session

1:00 NTC Variable time steps 151
and parameter discontinuities

2:00 WWL Introduction to NetPyNE 165

3:00 Coffee Break

3:15 WWL Introduction to NetPyNE continued

4:00 Hands-on exercises and personal projects

4:45 Daily wrapup

5:00 End of afternoon session

Evening session

7:00 WWL Survival in Computational Neuroscience
Hands-on exercises, personal projects, and special topics

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 3

Didactic Presentations The NEURON Simulation Environment

Friday, 6/14 Morning session

Time Speaker Title Page
9:00AM Q&A

9:15 NTC Initialization 187 *
10:30 Coffee Break

10:45 RAM The hoc programming language 197 *

12:00 Lunch

Afternoon session

1:00 NTC Threads 217 *
2:00 RAM Building a ring network--interactive session 229 **
3:00 Coffee Break

3:15 RAM Building a ring network continued

4:45 Daily wrapup

5:00 End of afternoon session

Evening session

7:00 Hands-on exercises, personal projects, and special topics

Saturday, 6/15 Morning session

Time Speaker Title Page
9:00AM Q&A
9:15 RAM Parallel computation: 231 *

distributed network models
10:30 Coffee Break

10:45 NTC High performance computing via the 259 *
Neuroscience Gateway Portal

12:00 Lunch

Page 4 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Afternoon session

1:00 RAM, NTC Parallel examples
WWL NetPyNE continued
3:00 Coffee Break
3:15 Hands-on exercises and personal projects
4:30 Wrapup, review, and evaluation (see last page in this booklet)
5:00 End of afternoon session

Other material

NTC Overview of creating and using 267
NEURON models

MLH Ion accumulation mechanisms: a calcium pump 275 *

NTC Linear Circuit Builder 281 *

NTC The Impedance Tools 291 *

RAM GUI development with Python 301

RAM Version control with git 305
Receipt penultimate page
Survey last page

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 5

Didactic Presentations The NEURON Simulation Environment

Page 6 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment

An intensive hands-on course presented at
University of Minnesota, Minneapolis

June 10 - 16, 2019

N.T. Carnevale, R.A. McDougal, W.W. Lytton

Supported in part by NIH and NSF

The Workflow

Physical Conceptual Computational
System Model Model

The modeler's tasks:
e create the computational model
¢ investigate/explore/control/use that model

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 7

Didactic Presentations The NEURON Simulation Environment

Lipid Bilayer
0.05
. |

Physical System oos
Membrane with no channels .
Model 002
Capacitor 001

I ok 1 1]

0 1 2 3 4 5

V ms
o 1

0 1 1 1 1 J

mv 1 2 3 4 5
—-40
Simulation #

Representation
create soma

Page 8 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Topics

1. How to create and use models of
neurons and networks of neurons

* How to specify anatomical and biophysical
properties

* How to control, display, and analyze models
and simulation results

2. How NEURON works

3. How to add user-defined biophysical
mechanisms

From Physical System
to Computational Model

Physical Conceptual Computational
System Model Model

Conceptual model
a simplified representation of the physical system

Computational model
an accurate representation of the conceptual model

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 9

Didactic Presentations The NEURON Simulation Environment

From Physical System
to Computational Model
Physical Conceptual Computational
system model model
python
soma = h.Section(name='soma')
. dendrite = h.Section(name='dendrite')
dendrite dendrite.connect(soma(1))
soma // hoc
create soma, dendrite
connect dendrite(0), soma(1)
Cal ball
pyramidal and
cell stick
Fundamental Concepts
What Driving What is
Signals moves force conserved
Electrical charge voltage charge
carriers gradient
Chemical solute concentration mass
gradient

Page 10

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Conservation of Charge

Example: Single Compartment

Lipid bilayer (no channels)
Membrane with linear ion channels (passive leak)

Project goals:
® Use the GUI to build the model
and custom interface for using it

* Run simulations and analyze results

* Change stimulus intensity and duration

* Adjust graphical displays of simulation results
* Adjust dt and Points Plotted / ms

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 11

Didactic Presentations The NEURON Simulation Environment

Page 12 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Conservation of Charge

The Model Equations

dv. Ve V.

J ; — J
Cjﬁ—l_ Iionj _Zk:

ik
V. membrane potential in compartment j

I net transmembrane ionic current in compartment |
o} membrane capacitance of compartment |

axial resistance between the centers of
compartment j
and
adjacent compartments k

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 13

Didactic Presentations The NEURON Simulation Environment

Separating Anatomy and Biophysics
from Purely Numerical Issues

section
a continuous length of unbranched cable

L —
1‘--—-—-——$~
AN
2,5’/

Anatomical data from A.l. Gulyas

Page 14 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Physical System

From http://www.mbl.edu/

[

Model

Hodgkin-Huxley cable equations
2
DoV, g h(V-E,)+ gn(V-E) + g/ (V-E)
4Ra 0X t
0.1(V+40
(Z—Tz—(xmm+ﬁm(1—m) (Xm:% B, =
% =—a,h+B,(1-h) ,=007e"""" g =
I ,n+B,(1-n) an:% B, = 0.125¢ (Vree
dt 1—9 1L
Model
Hodgkin-Huxley cable equations
D &'V _ c v
4R, ox* = ™ot

dm 0.1(V+40)

+gm’h(V—E,)+ gn*(V-E,)+g(V-E)

Representation

a0 = CemtBa(1om) a, = s B =
dh _ _ —0.05(V+65) _
E—fahh+ﬁ,,(lfh) o, =0.07e Br=——"s
o an+p(1-n) a,= % B, = 0.125¢ (V*65/%0
dt 1—e

Simulation

axon = h.Section(name = 'axon')]

axon.L = 2e4
axon.diam = 100
axon.nseqg = 43
[axon.insert('hh'&q

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 15

Didactic Presentations The NEURON Simulation Environment

-~ Ahout o Topology - Subsets 4 Geometry -~ Blophysics - Management Continuous Create
Specify Strategy

l_ Hlambda_wif)~2 = diam/{4"PI*FRa"cm)
£ nseg = ~LAd_lambda‘lambda_w(100))

forsec all {

/i fraction of space constant at 100Hz

[Jo—

¥
Z0000 i
100 i

axon

- About < Topology - Subsets - Geometry 4 Biophysics - Management icuntinunus Create

[Specify Strategy forsec all { #specify
Ay e

cm

pas
extracellular

hh

aHon

% || Graph Color/Brush x -0.5: 5.5 y s |I Graph Crosshair x -2000 : 220(

—————————————— 5) (/‘\v
- | | |
: 5 5000 nooa 15000 20000
-40

30 — -0

40

[l PaintProcessMa;

hape Space Ple

IClamp[0]
at: axani0)

IClamp[0]

Page 16 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

physical
distance

normalized
distance

v 1

Range Variables
Name Meaning Units
diam diameter [um]
cm specific membrane [uf/cm?]
capacitance
g_pas (hoc) specific conductance [siemens/cm?]
pas.g (Python) of the pas mechanism
\Y membrane potential [mV]
range

normalized position along the length of a section
O<range<1

physical
v length
]

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 17

Didactic Presentations

Page 18

The NEURON Simulation Environment

Syntax:
secname(range) .rangevar
Translation: "in secname
at the location corresponding to range
access the value of rangevar"

Examples:
v at middle of dend
dend(0.5).v # shortcut: dend.v

at each point in dend
where v is calculated
print range, anat distance, and v
for seg in dend.allseg():
print seg.x, seg.x*dend.L, dend(seg.x).v

nseg

the number of points in a section at which
the discretized cable equation is integrated

nseg=1 ¢ 0)
nseg=2 ¢ 0 | 0)
nseg=3¢€_® T e T e 3

Example: axon.nseqg = 3

To test spatial resolution
for sec in h.allsec():
sec.nseqg *= 3
and repeat the simulation

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal

, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Category
Time
Voltage
Current
specific
absolute
Capacitance
specific
absolute
Length
Conductance
specific
absolute
Cytoplasmic resistivity
Resistance
Concentration

Variable
t

\'

cm
diam, L

g

Ra
ri()

nai etc.

Units
[ms]
[mV]

[mA/cm?] (distributed)
[nA] (point process)

[uflem?]
[nf] (point process)

[um]

[S/cm?] (distributed)
[MS] (point process)
[Q cm]

[106 Q]

[mM]

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 19

Didactic Presentations The NEURON Simulation Environment

Page 20 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Example: Branched Model Cells

Physical system: anatomically complex cell
Conceptual model: "stick figure™

Computational model: soma + dendritic cylinder(s)
(and maybe an axon . . .)

Project goals:
e Learn how to use CellBuilder
e Use session files to save and retrieve user
interface (elementary project management)
e Test model and simulation:
structural integrity
discretization of space and time

oblique

soma
O

basilar ~ trunk trunk[1]

tuft

From hoc file generated by CellBuilder:
create soma, trunk[2], oblique, tuft, basilar

proc topol() { local i
connect trunk(©), soma(1)
connect trunk[1](0), trunk(l)
connect oblique(0), trunk(1)
connect tuft(®), trunk1
connect basilar(0), soma(0)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 21

Didactic Presentations The NEURON Simulation Environment

oblique
soma
C tuft
basilar trunk trunk[1]
From hoc file generated by CellBuilder:
proc geom() {
forsec all { }
soma { L =30 diam = 30 }
trunk { L = 400 diam = 3 }
trunk[1] { L = 400 diam =2 }
oblique { L = 300 diam = 1.5 }
tuft { L = 300 diam = 1 }
basilar { L = 300 diam =3 }

proc biophys() {

forsec
Ra

all {
160

cm 1

3
forsec dendrites {
insert pas
g_pas = 3e-05
e_pas = -70
}
forsec apicals {
insert hh
gnabar_hh = 0.012
gkbar_hh = 0.0036
gl _hh =0
el _hh -54.3

}
soma {
insert hh
gnabar_hh = 0.12
gkbar_hh = 0.036
gl_hh = 0.0003
el _ hh = -54.3

Page 22 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 23

Didactic Presentations The NEURON Simulation Environment

Page 24 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Scripting NEURON

Robert A. McDougal
Yale School of Medicine

11 June 2019

What is a script?

A script is a file with computer-readable instructions for performing a task.

In NEURON, scripts can: set-up a model, define and perform an experimental
protocol, record data, ...

Why write scripts for NEURON?

@ Automation ensures consistency and reduces manual effort.
e Facilitates comparing the suitability of different models.

o Facilitates repeated experiments on the same model with different parameters
(e.g. drug dosages).

Facilitates recollecting data after change in experimental protocol.

Provides a complete, reproducible version of the experimental protocol.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 25

The NEURON Simulation Environment

Didactic Presentations

Programmer’s Reference

(% NEURON | empirically-based - x Rabert

&« < 1y @ Secure | https:/neuron.yale.edu/neuron/ % | * P

NEURON

NEWS DOWNLOAD DOCUMENTATION COURSES PUBLICATIONS RESOURCES ABOUT US Search

FORUM MODELDB PROGRAMMER'S REFERENCE

Welcome to the community of
NEURON users and developers!

Users who have special Interests and expertise are invited
to participate in the NEURON project by helping to
organize future meetings of the NEURON Users Group, and
by participating in collaborative development of
documentation, tutorials, and software. We also welcome
suggestions for ways to make NEURON a more useful toal
for research and teaching.

Here you will find Installers and source code,
documentation, tutorials, announcements of courses and
conferences, and discussion forums about NEURON in
particular and computational neuroscience in general.

The NEURON simulation environment Is used in
laboratories and classrooms around the world for building
and using computational models of neurons and networks

of neurons.

DOWNLOAD THE NEURON FORUM LATEST NEWS

Download macOS installer * NEURON Installation .

10 July Multiscale modeling with
All standard versions * Making and using models 2018 NEURON tutorial at CNS 2018
Alpha versions * Programming NEURON with Python
Snuiree an githith = NIEHIDAN i adiinnt
neuron.yale.edu

[} Graph— NEURON 7.5 docurn X Robert
= C Y @ Secure https://www.neuron.yale.edu/neuron/static/py_doc/fvisualization/graph.htm| G w
NEURON 7.5 documentation » Switch to HOC | previous | next | modules | modules | index

Graph

Previous topic
addexpr - addobject - addvar - align - begin - beginline - brush - color - crosshair_action - erase - erase_all +

Glyph
. exec_menu - family - fastflush - fixed - flush - getline - gif - glyph - label - line - line_info - mark -
Next topic menu_action - menu_remove - menu_tool - plot - printfile - relative - save_name - simgraph - size - unmap -
Grapher vector - vfixed - view - view_count - view_info - view_size - xaxis - xexpr - yaxis
This Page
Show Source Graph
Questions? class Graph
Ask the NEURON Forum. Syntax:
Quick search g = h.Graph()
I " g = h.Graph(0)
Enter search terms or a module, -
class or funclion name. Description:

An instance of the Graph class manages a window on which x-y plots can be drawn by calling
various member functions. The first form immediately maps the window to the screen. With a 0
argument the window is not mapped but can be sized and placed with the view() function.

Example:
The most basic interpreter prototype for producing a plot follows:

from neuron import h, gui
import math

Create the graph
g = h.Graph()

specify coordinate system for the canvas drawing area
numbers are: xmin, xmax, ymin, ymax respectively
g.size(0, 10, -1, 1)

the next g.line command will move the drawing pen to the

Use the “Switch to HOC” link in the upper-right corner of every page if you need documentation for HOC, NEURON's original programming language.
HOC may be used in combination with Python: use h.load-file to load a HOC library; the functions and classes are then available with an h. prefix.

Page 26 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Introduction to Python

Displaying results
The print command is used to display non-graphical results.

It can display fixed text:
print ('Hello everyone.') Hello everyone.

or the results of a calculation:
print(5 * (3 + 2)) 25

| N

Storing results
Give values a name to be able to use them later.

a = max([1.2, 5.2, 1.7, 3.6])
print(a) 5.2

In Python 2.x, print is a keyword and the parentheses are unnecessary. Using the parentheses allows your code to work with both Python 2.x and 3.x.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 27

Didactic Presentations

The NEURON Simulation Environment

Don't repeat yourself

Lists and for loops

To do the same thing to several items, put the items in a list and use a for loop:

numbers = [1, 3, 5, 7, 9]
for number in numbers:
print (number * number) 19 25 49 81

Items can be accessed directly using the [] notation; e.g. n = number [2]

To check if an item is in a list, use in:

print(4 in [3, 1, 4, 1, 5, 9]) True
print(7 in [3, 1, 4, 1, 5, 9]) False

Dictionaries

If there is no natural order, specify your own keys using a dictionary.
data = {'soma': 42, 'dend': 14, 'axon': 'blue'}
print(datal['dend']) 14

Don't repeat yourself

Functions

If there is a particularly complicated calculation that is used once or a simple one
used at least twice, give it a name via def and refer to it by the name. Return the
result of the calculation with the return keyword.

def area_of_cylinder(diameter, length):
return 3.14 / 4 * diameter ** 2 * length

areal = area_of_cylinder(2, 100)
area2 = area_of_cylinder (10, 10)

Page 28

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Using libraries

Libraries (“modules” in Python) provide features scripts can use.
To load a module, use import:
import math

Use dot notation to access a function from the module:
print (math.cos(math.pi / 3)) 0.5
One can also load specific items from a module.

For NEURON, we often want:
from neuron import h, gui

Other modules

Python ships with a large number of modules, and you can install more (like
NEURON). Useful ones for neuroscience include: math (basic math functions),
numpy (advanced math), matplotlib (2D graphics), mayavi (3D graphics),
pandas (analysis and databasing), ...

Getting help

To get a list of functions, etc in a module (or class) use dir:

from neuron import h
print(dir(h))

Displays:

['APCount', 'AlphaSynapse', 'BBSaveState', 'CVode', 'DEG', 'Deck',
'E', 'Exp2Syn', 'ExpSyn', 'FARADAY', 'FInitializeHandler',
'File', 'GAMMA', 'GUIMath', 'Glyph', 'Graph', 'HBox', 'IClamp',
'Impedance', 'IntFirel', 'IntFire2', 'IntFire4', 'KSChan', ...]

To see help information for a specific function, use help:
help(math.cosh)

Python is widely used, and there are many online resources available, including:
@ docs.python.org — the official documentation
e Stack Overflow — a general-purpose programming forum
o the NEURON programmer’s reference — NEURON documentation
e the NEURON forum — for NEURON-related programming questions

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 29

Didactic Presentations The NEURON Simulation Environment

Basic NEURON scripting

Creating and naming sections
A Section in NEURON is an unbranched stretch of e.g. dendrite.

To create a Section, use h.Section and assign it to a variable:
apical = h.Section(name='apical')
A Section can have multiple references to it. If you set a = apical, there is still
only one Section. Use == to see if two variables refer to the same Section:
print(a == apical) True
Python's str function returns the name of a Section:
print(str(apical)) apical

Also available: a cell attribute for grouping Sections by cell.

The last print is equivalent to print (apical) but str was shown to illustrate how to get a string representation.

Page 30

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Connecting sections

To reconstruct a neuron’s full branching structure, individual sections must be
connected using .connect:
dend2.connect (dend1(1))

Each section is oriented and has a 0- and a 1-end. In NEURON, traditionally the
0-end of a section is attached to the 1-end of a section closer to the soma. In the
example above, dend2's 0-end is attached to dendl’s 1-end.

0o dend2 1
? dend1 .

To print the topology of cells in the model, use h.topology(). The results will
be clearer if the sections were assigned names.
h.topology()

If no position is specified, then the 0-end will be connected to the 1-end as in the example.

Python script: Output:
from neuron import h

-1 soma(0-1)
define sections ¢ . _
soma = h.Section(name='soma') !] proxl.\plcal(O D
papic = h.Section(name='proxApical') I apic1(0-1)
apicl = h.Section(name='apicl') Y apic2(0-1)
apic2 = h.Section(name='apic2') ¢ _
pb = h.Section(name='proxBasal') I pro}.{Basal(O 1
dbl = h.Section(name='distBasall') ‘| distBasall(0-1)
db2 = h.Section(name='distBasal2') I distBasal2(0-1)

connect them

papic.connect (soma)

pb.connect (soma(0)) MOI’phOIOgyZ
apicl.connect (papic)

apic2.connect (papic)

db1l.connect (pb) d@i@ oL

db2.connect (pb) 888/2 y
A\ proxBasal soma proxApical S

list topology 6\5\336 0re7

h.topology()

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 31

Didactic Presentations The NEURON Simulation Environment

Length, diameter, and position

Set a section's length (in xm) with .L and diameter (in gm) with .diam:
sec.L = 20

sec.diam = 2

Note: Diameter need not be constant; it can be set per segment.

To specify the (x, y, z; d) coordinates that a section sec passes through, use e.g.
sec.pt3dadd(x, y, z, d). The section sec has sec.n3d() 3D points; their
ith x-coordinate is sec.x3d(i). The methods .y3d, .z3d, and .diam3d work
similarly.

Warning: the default diameter is based on a squid giant axon and is not
appropriate for modeling mammalian cells. Likewise, the temperature
(h.celsius) is by default 6.3 degrees (appropriate for squid, but not for
mammals).

Tip: Define a cell inside a class

Consider the code

class Pyramidal:
def __init__(self):
self.soma = h.Section(name='soma', cell=self)

The __init__ method is run whenever a new Pyramidal cell is created, e.g. via
pyrl = Pyramidal()

The soma can be accessed using dot notation:
print(pyrl.soma.L)

By defining a cell in a class, once we’re happy with it, we can create
multiple copies of the cell in a single line of code.

pyr2 = Pyramidal ()
or even
pyrs = [Pyramidal() for i in range(1000)]

Page 32

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Tip: Sections that work well with GUI tools

For meaningful Section names to appear in the GUI tools, the name attribute must

be specified for top-level Sections:

soma = h.Section(name='soma')

] N NEURON
VYariable to graph
Enter Symhuislnamee
[pysec.sorma]
[Stow |
soma. Afcm(05) A Al

diam(05)

i_can(0:5)

05)

For Sections in cells, specify the name of the Section and the __str__ of the cell:

class GranuleCell:
def __init__(self, gid):
self._gid = gid
self.soma = h.Section(name='soma', cell=self)
def __str__(self):
return 'GranuleCell[{}]'.format(self._gid)

g = GranuleCell(0)

[X NEURON
Variable to graph

Enter Symbol name:

[_pysec.GranuleCell[0] soma]

Lstow]
GranuleCell[o] Af soma.

To see the list of Sections or cells, select Show > Python Sections.

Viewing the morphology with h.PlotShape

from neuron import h, gui

class Cell:
def __init__(self):
main = h.Section(name='main', cell=self)
dend1 h.Section(name='dendl', cell=self)
dend2 = h.Section(name='dend2', cell=self)

dend1.connect (main)
dend2.connect (main)

main.diam = 10
dendl.diam = 2
dend2.diam = 2

Important: store the sections
self.main = main; self.dendl = dendl
self.dend2 = dend2

my_cell = Cell()

ps = h.PlotShape()
ps.show(0) # use 1 instead of O to hide diams

Close Hide

To save the PlotShape ps use ps.printfile('filename.eps').

Use the PlotShape.plot method to plot on a matplotlib figure.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 33

Didactic Presentations The NEURON Simulation Environment

Viewing voltage, sodium, etc

Suppose we make the voltage ('v')
nonuniform, which we can do via:

my_cell.main.v = 50
my_cell.dendl.v = 0
my_cell.dend2.v = -65

5 M e e o X

()

We can create a PlotShape that o

color-codes the sections by voltage: \
ps = h.PlotShape()
ps.variable('v')

ps.scale(-80, 80)
ps.exec_menu('Shape Plot')

ps.show(0)

After increasing the spatial resolution: R : -
for sec in h.allsec(): sec.nseg = 101 = =

We can plot the voltage as a function of "

distance from main(0) to dend2(1): -

rvp = h.RangeVarPlot(
Ivl
g = h.Graph()
rvp.plot(g)
g.exec_menu('View = plot')

, my_cell.main(0), my_cell.main(1))

Sodium concentration could be plotted with 'nai' instead of 'v', etc.

RangeVarPlot.plot can also be used to plot on a matplotlib axis or bokeh.

Aside: Jupyter

~ basic-jupyter2 x Robert
? ¥ @ localhost:8888/notebocks/Dropbox/active-work-files/jupytertest/basic-jupyter2.ipynb b~ 4
~Ju pyter basic-jupyter2 Last Checkpoint: 9 minutes ago (unsaved changes) A
Fle Edit View Inset Cel Kemel Widgets Help | Python [default] ©
B+ | x & B 4 % M B C| Code s/ = CelToolbar & & O

Jupyter notebooks
allow mux‘mg code with nchly formatted documentation and output.
The code can be easily edited and rerun.

In [1]: for i imn range(5):
print('{} ** 2 = {}'.format(i, i**2))

W
-
[SENESNY
wowow oo

[FRTETES

Y

In [2]: from IPython.display import display, HTML
def squares(nums):
result = '<table><tr><th>n</th><th>n²</th></tr>'
for n in nums:
result += '<tr><td>{}</td><td>{}</td></tr>'.format(n, n**2)
result += '</table>’
display(HTML(result))

In [3]: squares([1l, 4, 6, 42])

n
1
4 |16
6

42 (1764

In []t

Page 34 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Aside: Jupyter

T |2.: | malalalljz ~ed=cok
Ln [Frm 322127 Erers b
Fram =yralsrl-z bgperr paplm,
1obemal Deloitakeorer fot®l
mylid’: 1.0
LUURN B R PG B I R B o sy R B
Par 720 La n.dliaooii:
[T HE L | Tk
m AL | 1= T kzlars s meew W]]
voodobap = D5 Lo = 1 oduame = 0

il lialyea -2
T TELTISraT e
(LT S T]

oo [T : &= 1=Llzla=sceEFaas
vl arCaeTl =, repers {ra) mckjh samslal e s0h rarklE rpdes]_mendsimeeel [mIrdErs koG

8- TR Y ﬂ

i) .
+ L | ey
2 L
- § =i
u - “n=

Loading morphology from an swc file

To create pyr, a Pyramidal cell with morphology from the file c91662. swc:

from neuron import h, gui
h.load_file('import3d.hoc')

class Pyramidal:

def __init__(self):
self.load_morphology ()
do discretization, ion channels, etc

def load_morphology(self):
cell = h.Import3d_SWC_read()
cell.input('c91662.swc')
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

pyr = Pyramidal()

pyr has lists of Sections: pyr.apic, .axon, .soma, and .all. Each Section has
the appropriate .name () and .cell().

Only do this in code after you've already examined the cell with the Import3D GUI tool and fixed any issues in the SWC file.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 35

Didactic Presentations The NEURON Simulation Environment

Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?

Working with multiple cells

To create a method to reposition a cell and call it from __init__:

class Pyramidal: def __init__(self, gid, x, y, 2):
def _shift(self, x, y, z): self._gid = gid

soma = self.somal[0] self.load_morphology ()

n = soma.n3d() self._shift(x, y, z)

xs = [soma.x3d(i) for i in range(n)]

ys = [soma.y3d(i) for i in range(n)] def load_morphology(self):

zs = [soma.z3d(i) for i in range(n)] cell = h.Import3d_SWC_read()

ds = [soma.diam3d(i) for i in range(n)] cell.input('c91662.swc')

for i, (a, b, ¢, d) in enumerate(zip(xs, ys, zs, ds)): i3d = h.Import3d_GUI(cell, 0)
soma.pt3dchange(i, a + x, b +y, ¢ + z, d) i3d.instantiate(self)

Now if we create ten, while specifying offsets,
mypyrs = [Pyramidal(i, i * 100, 0, 0) for i in range(10)]
The PlotShape will show all the cells separately:

Page 36 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Didactic Presentations

Does position matter?

Sometimes.

Position matters with:
@ Connections based on proximity of axon to dendrite.
@ Connections based on cell-to-cell proximity.
e Extracellular diffusion.

@ Communicating about your model to other humans.

Distributed mechanisms

Use .insert to insert a distributed mechanism into a section. e.g.
axon.insert('hh')

Point processes

To insert a point process, specify the segment when creating it, and save the

return value. e.g.

To find the segment containing a point process pp, use
seg = pp.get_segment ()

The section is then seg.sec and the normalized position is seg.x.
The point process is removed when no variables refer to it.
Use List to find out how many point processes of a given type have been defined:

all_iclamp = h.List('IClamp')
print ('Number of IClamps:')
print(len(all_iclamp))

Page 37

Didactic Presentations The NEURON Simulation Environment

Setting and reading parameters

In NEURON, each section has normalized coordinates from 0 to 1.
To read the value of a parameter defined by a range variable at a given normalized
position use: section(x).MECHANISM.VARNAME

e.g.

gkbar = apical(0.2).hh.gkbar

Setting variables works the same way:

apical(0.2) .hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken
into (each potentially with their own value for range variables), use
section.nseg:

apical.nseg = 11

To specify the temperature, use h.celsius:

h.celsius = 37

Setting and reading parameters

Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

for segment in apical:

segment.hh.gkbar = 0.037

The above is equivalent to apical.gkbar_hh = 0.037, however the first version
allows setting values nonuniformly.

A list comprehension can be used to create a Python list of all the values of a
given property in a segment:

apical_gkbars = [segment.hh.gkbar for segment in apicall]

Note: looping over a Section only returns true Segments. If you want to include
the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead.

HOC's for (x,0) and for (x) are equivalent to looping over a section and looping over allseg, respectively.

Page 38

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Running simulations: the basics

To initialize a simulation to -65 mV:
h.finitialize(-65)
To advance a single time step:

h.fadvance ()

For higher-level controls, load the stdrun.hoc library:
h.load file('stdrun.hoc"')
With that library loaded, we can:
Run a simulation until t = 50 ms:
h.continuerun(50)

Additional h.continuerun calls will continue from the last time.

stdrun.hoc is loaded automatically during a from neuron import gui.

Running simulations: improving accuracy

Increase time resolution (by reducing time steps) via, e.g.

h.dt = 0.01
Enable variable step (allows error control):

h.CVode() .active(True)
Set the absolute tolerance to e.g. 10~°:
h.CVode() .atol(1le-5)

Increase spatial resolution:

sec.nseg = 11
To increase nseg for all sections:

for sec in h.allsec(): sec.nseg *= 3

The default absolute tolerance is 10_2, but with different variables assigned different tolerance scales using cvode.atolscale or Tools >
VariableStepControl > Atol Scale Tool. Relative tolerance may also be set using rtol, but if using that set atol to O first, otherwise the allowed error will
be greater than both; see the programmer’s reference for details.

If using the NEURON GUI for plotting, use h.cvode_active(True) to activate CVode to ensure the graphs make the right assumptions about interpreting
timesteps; this function is only available when the gui module is loaded.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 39

Didactic Presentations The NEURON Simulation Environment

Recording data

To see how a variable changes over time, create a Vector and pass in a pointer
(prefix the end of the variable name with _ref_) to the record method; e.g. to
record soma(0.3) .1ina, use

data = h.Vector() .record(soma(0.3)._ref_ina)

@ Be sure to also record h. _ref _t to know the corresponding times.

@ .record must be called before h.finitialize().

If v is a Vector, then v.as_numpy() provides the equivalent numpy array; that is, changing one changes the other.

Example: Hodgkin-Huxley

from neuron import h, gui
from matplotlib import pyplot

morphology and dynamics
soma = h.Section(name="'soma')
soma.insert('hh')

current clamp
= h.IClamp(soma(0.5))
.delay = 2 # ms
.dur = 0.5 # ms
.amp = 50 20

L A

E:3

recording 40,
= h.Vector() .record(h._ref_t)
h.Vector() .record(soma(0.5)._ref_v) 60

< o
1]

simulation 0 10 20 30 40 50
h.finitialize(-65)
h.continuerun(49.5)

plotting

pyplot.plot(t, v)
pyplot.show()

Page 40 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Operational definition of a spike: Vm crossing a threshold (by default 10 mV) in a
positive-going direction. We could analyze the time series to find this, but
NEURON's NetCon objects can detect this directly. Changes from the previous
example are highlighted.

from neuron import h, gui

from matplotlib import pyplot

soma = h.Section(name='soma')

soma.insert('hh')

current clamps 20

stim_ts = [2, 13, 27, 40]

iclamps = [h.IClamp(soma(0.5)) for t in stim_t

for t, iclamp in zip(stim_ts, iclamps): 20
iclamp.delay = t # ms

iclamp.dur = 0.5 # ms -

iclamp.amp = 50 6ol
recording
t = h.Vector().record(h._ref_t) 20 i 3 3 20 50
v = h.Vector().record(soma(0.5)._ref_v)
nc = h.NetCon(soma(0.5)._ref_v, None, sec=soma)
spike_times = h.Vector() The console displays:
nc.record(spike_times)
simulation spike times:
h.finitialize(-65) [3.225000000100012, 28.20000000009893,
h.continuerun(49.5) 41.70000000010092]
print ('spike times:')
e atiny prie-tines)) That is, the cell spiked at: 3.225
pyplot.plot(t, v) ms, 28.200 ms, and 41.700 ms.

pyplot.show()

Interspike intervals (ISls) are the delays between spikes; that is, they are the
differences between consecutive spike times.

To display ISls for the previous example, we add the lines:

st = list(spike_times)

isis = [next - last for next, last in zip(st[1l:], st[:-1])]
print ('ISIs: ')

print(isis)

The result:
[24.97499999999892, 13.50000000000199]

That is, the delays between spikes were 24.975 ms and 13.500 ms.

Vector’s deriv method can also be used to calculate ISls: sis = list(spike-times.c().deriv(1, 1))

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 41

Didactic Presentations The NEURON Simulation Environment

Networks of neurons

Suppose we have the simple neuron model:

from neuron import h, gui

class Cell:

def __init__(self):
self.soma = h.Section(name='soma', cell=self)
self.soma.insert('hh')

and two cells:

neuronl
neuron2

Cell()
Cell()

one of which is stimulated by a current clamp:

ic
ic
ic
ic

= h.IClamp(neuroni.soma(0.5))
.amp = 50
.delay

=2 # ms
.dur = 0.5 # ms

A synapse from that cell to the other may cause the second cell to fire when the
first cell is stimulated. In NEURON, the post-synaptic side of the synapse is a

point

process; presynaptic threshold detection is done with an h.NetCon.

Networks of neurons

Setup the post-synaptic side:

postsyn = h.ExpSyn(neuron2.soma(0.5))
postsyn.e = O # reversal potential

Setup the presynaptic side, transmission delay, and synaptic weight:
syn = h.NetCon(neuronl.soma(0.5)._ref_v, postsyn, sec=neuronl.soma)
syn.delay = 1
syn.weight[0] = 5

Then

we can setup recording, run, and plot as usual:

t = h.Vector() .record(h._ref_t)

vl
v2

h.finitialize(-65)
h.continuerun(10)

from matplotlib import pyplot of
pyplot.plot(t, vi, t, v2) 201
pyplot.x1im((0, 10))
pyplot.show()

= h.Vector() .record(neuroni.soma(0.5)._ref_v)
= h.Vector() .record(neuron2.soma(0.5)._ref_v)

60,

—a0l

—60

h.ExpSyn is one of several general synapse types distributed with NEURON; additional ones may be specified in NMODL or downloaded from

ModelDB.

The use of h.NetCon must be modified slightly to support parallel simulation; this is discussed in a different presentation.

Page 42

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Storing data to CSV to share with other tools

The CSV format is widely supported by mathematics, statistics, and spreadsheet
programs and offers an easy way to pass data back-and-forth between them and

NEURON.

In Python, we can use the csv module to read and write csv files.

Adding the following code after the continuerun in the example will create a file

data.csv containing the course data.

import csv
with open('data.csv', 'wb') as f:
csv.writer(f) .writerows(zip(t, v))

Each row in the file corresponds to one time point. The first column contains t
values; the second contains v values. Additional columns can be stored by adding

them after the t, v.

For more complicated data storage needs, consider the pandas or h5py modules.

Unlike csv, these must be installed separately.

For more information

For more background and a step-by-step guide to creating a network model, see

the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython /index.html

The NEURON Python programmer’s reference is available at:

http://neuron.yale.edu/neuron /static/py_doc/index.html

Ask questions on the NEURON forum:

http://neuron.yale.edu/phpbb

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 43

Didactic Presentations The NEURON Simulation Environment

Page 44 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

NEURON Main Menu

ChannelBuild[0]managedKSChal

leak Density Mechanism
NonSpecific ohmic ion current
i_leak = g_leak * (v - e_leak)
gis a RANGE PARAMETER
Default g = 0 (S/cm2) e =0 (mV)

ChannelBuild[0JmanagedKSChal

ChannelBuild[1]JmanagedKSChal

[Properies |
nahh Density Mechanism
na ohmic ion current

ina = g_nahh * (v - ena)
g=gmax*m~3*h

Default gmax = 0 (S/cm2)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 45

Didactic Presentations The NEURON Simulation Environment

Default gmax = 0 (S/cm2)

m’=am*(1 - m) - bm*m

ChannelBuildGateGUI[0]forChannelBuild[0]

« Statesw, Transitions4 Properties mh3
Select hh state or ks transition to change properties m’ = am*(1 - m) - bm*m

m _Power [

Fractional Conductance

h %ﬁl

 Adjust Run m<>m(ab) (KSTrans[0])]
[Display inf, tau

am = A*x/(1 - exp(-x)) where x = k*(v - d)

E—
—
Ec—

bm = A*exp(k*(v - d)))

ChannelBuild[0]managedKSChan[0]

nahh Density Mechanism
na ohmic ion current
ina (mA/cm2) = g_nahh * (v - ena)
g = gmax * mA3 * h
Default gmax = 0@ (S/cm2)

m' = am*(1 - m) - bm*m (KSTrans[0])
am = 1*x/(1 - exp(-x)) where x = 0.1*(v + 40) (Vector([7])
bm = 4*exp(-0.05556*(v + 65))) (Vector([8])

h' = ah*(1 - h) - bh*h (KSTrans[1])
ah = 0.07*exp(-0.05*(v + 65))) (Vector[11])
bh = 1/(1 + exp(0.1*(-35 - Vv))) (Vector[12])

Page 46 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

bh = A/(L + exp(k*(d - V))

ah

bh bh = A/(1 + exp(k*(d - v))

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 47

Didactic Presentations The NEURON Simulation Environment

tauh = A*exp(k*(v — d)))

| ChannelBuildGateGUI[0]forChannelBuild[0] |

4 States< Transitions<, Properties no gate selected

Drag new state from left. Drag off canvas to delete

c %

v Adjust Run no KSTrans selected

[T

[elelela)
NhOOR

Page 48 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

| ChannelBuildGateGUI[0]forChannelBuild[0] |

« States4 Transitions<, Properties no gate selected

New transition pair: select source and drag to target

c <% Ko

v Adjust Run no KSTrans selected

[T

o000
N

ChannelBuildGateGUI[0]forChannelBuild[0]

« States< Transitions4> Properties fo)

Select hh state or ks transition to change properties O: 3 state, 2 transitions

PRI I O

Fractional Conductance

V. V.
C<>Cc2<—>0

4 Adjust Run

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 49

Didactic Presentations The NEURON Simulation Environment

ChannelBuildGateGUI[0]forChannelBuild[0]

« States\, Transitions4> Properties fo)

Select hh state or ks transition to change properties O: 3 state, 2 transitions

_Power [

i Fractional Conductance
vV cal
¢S o
i =l
v Adjust Run I C2 +cai<—>0 (a, b) (KSTrans[9]) f
Display inf, tau
oé ac20 Py
82 bC20
. aC20=A
[| 02" | | K7

ChannelBuild[0]managedKSChal

kca Density Mechanism
k ohmic ion current
ik =g_kca* (v - ek)
g=gmax*O
Default gmax = 0 (S/cm2)

ChannelBuild[0JmanagedKSChan[0]

[Properties |

leak Density Mechanism
NonSpecific ohmic ion current
i_leak = g_leak * (v — e_leak)
g=gmax*0O *02* 03
Default gmax = 0 (S/cm2) e =0 (mV)

ChannelBuildGateGUI[0]forChannelBuild[0]

4 Statesw, Transitions, Properties no gate selected
Drag new state from left. Drag off canvas to delete
o nrniv
c \% %
C<>Cc2<—> o0
V.
C3<—>02
o3
+ Adjust Run no KSTrans selected r
R E
[X

Page 50 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

ChannelBuild[0]managedKSCha

nrniv

ChannelBuild[0]managedKSChal

[Properies] |
leak Density Mechanism
cl ohmic ion current
icl = g_leak * (v — ecl)
gis a RANGE PARAMETER

Default g = 0 (S/cm2)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 51

Didactic Presentations The NEURON Simulation Environment

Page 52 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Working with morphometric data

Robert A. McDougal
Yale School of Medicine

7 August 2018

Neurons have complicated morphology

Cajal 1909, as reproduced in Rall 1962.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 53

Didactic Presentations The NEURON Simulation Environment

Neuron morphology data

Generally consists of a set of (x, y, z; d) points and connectivity. Common
formats: swc, asc.

Where to get it
@ Do it yourself.
@ From the kindness of others.
o ModelDB (modeldb.yale.edu).
@ NeuroMorpho.Org.

How to get it into NEURON
e Standalone conversion programs.
@ Maybe it is already there (e.g. if from ModelDB).
o Import3D tool (GUI or programmatic).

NeuroMorpho.Org

: @ NeuroMorﬁho.Org @

;' Version 7,4 - Refeased; 04/ 1672018 - Content; 36893 neurons

ASEREYE el o be b ehera Liniier 4 IS, L

Tew! numicer af demnoads: (0360372 Total s te hies s Soquat L, 2006, 0533

{ 204 meters of recoastructed neurepll >B.2millon neuranal branchcs

WL wMo pho.0rg 15 @ cantally curates recrtary o digitally reconstructed

g~
-

.

86,893 reconstructions - 514 cell types - 278 brain regions

Page 54 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NeuroMorpho.Org: cell page

NeuroMorpho.Org %

Version 7.1 - Released: 03/30/2017 - Content: 62304 neurons
Standardized

always SWC
~
Morphology File

3D
Neuron
Viewer
. / Log File (Standardized
mlght Loy [Ee (ORtEhze] Animation
have
soma Include Signature

Original
i Get above files zipped
outline

Morphology File

Details about selected neuron
NeuroMorpho.Org ID : NMO_00082

Neuron Name : n401

Archive Name : Turner

Species Name : rat

Examine metadata

NeuroMorpho.Org ID : NMO_00082
Neuron Name : n401

Archive Name : Turner

Species Name : rat

Strain : Fischer 344

Structural Domains : Dendrites, Soma, No Axon

Physical Integrity : Dendrites Complete

Morphological Attributes : Diameter, 3D, Angles

Min Age : 2.0 months

Max Age : 8.0 months

Gender : Male/Female

Min Weight : 200 grams

Max Weight : 350 grams
Development : young

Primary Brain Region : hippocampus
Secondary Brain Region : CAl
Tertiary Brain Region : Not reported
Primary Cell Class : principal cell
Secondary Cell Class : pyramidal
Tertiary Cell Class : Not reported
Original Format : CVAPP.swc
Experiment Protocol : in vivo
Experimental Condition : Control
Staining Method : biocytin
Slicing Direction : coronal

Slice Thickness : 80.00 pm

Tissue Shrinkage : Reported 25% in xy, 75% in z

Corrected 133% in xy, 400% in z
Objective Type : oil

Magnification : 100x

Reconstruction Method : Neurolucida
Date of Deposition : 2005-12-31
Date of Upload : 2006-08-01

Copyright © 1998-2019 N.T. Carnevale, M.L.

Soma Surface : 903.25 pm2
Number of Stems : 7

Number of Bifurcations : 113
Number of Branches : 233

Overall Width : 363.7 um

Overall Height : 717.18 um

Overall Depth : 364.21 um

Average Diameter : 1.16 um

Total Length : 22216.3 pm

Total Surface : 84796.1 um?2

Total Volume : 30674.3 um3

Max Euclidean Distance : 668.56 pm
Max Path Distance : 1893.37 um
Max Branch Order: 25

Average Contraction: 0.7

Total Fragmentation : 5460

Partition Asymmetry : 0.56

Average Rall's Ratio : 1.78

Average Bifurcation Angle Local : 89.59°
Average Bifurcation Angle Remote : 75.23°
Fractal Dimension : 1.07

THE JOURNAL OF COMPARATIVE NEUROLOGY 391:335-352 (1998)

Dendritic Properties of Hippocampal CA1
Pyramidal Neurons in the Rat:
Intracellular Staining In Vivo and In Vitro
G.K. PYAPALL ' A. SIK,” M. PENTTONEN,® G. BUZSAKL* aNp D.A. TURNER"%#*

Department of Neurosurgery, Duke University, Durham, North Carolina 27710
“Durham Veterans Affairs Medical Center, Durham, North Carolina 27

“Center for Molecular and Behavioral Neuroscience, Rutgers,
The State University of New Jersey, Newark, New Jersey 07102
“Department of Neurobiology, Duke University, Durham, North Carolina 27710

Hines, and R.A. McDougal, all rights reserved Page 55

Didactic Presentations The NEURON Simulation Environment

Import3D

Access via Tools - Miscellaneous - Import 3D.
Can instantiate directly into NEURON or transfer to CellBuilder.

For more details, see: neuron.yale.edu/neuron/docs/import3d

Loading morphologies via Python scripts is discussed in a different talk.

Potential issues

Warning: not every morphology was reconstructed with the intent of being in a
simulation.

Potential factors affecting the quality of the data:
@ histology
e staining, amputation, shrinkage
@ physics
@ diameter

@ spines

Before using a morphology found online, always read the associated paper(s) to
make sure you understand any limitations of the reconstruction.

Page 56 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Trust but verify...

Qualitative tests.

Look for orphan sections and bottlenecks.
@ Insert pas, set Ra and g_pas = pas.g low.
@ Inject large depolarizing current at soma.
@ Examine shape plot of v.

Look for z-axis drift and backlash.

@ Rotate the cell on the shape plot and look for abrupt jumps.

... and verify some more

Quantitative tests.
Is a diameter too large or too small?

diam_min = 1el0
diam_max = 0
for sec in h.allsec():
for i in range(sec.n3d()):
diam_min = min(diam_min, sec.diam3d(i))
diam_max = max(diam_max, sec.diam3d(i))

print('Min diam: %g' % diam_min)
print('Max diam: %g' % diam_max)

Can also test for systematic errors, e.g. by looking at a histogram of diameter
measirements.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 57

Didactic Presentations The NEURON Simulation Environment

Page 58

For more on issues with morphology

Kaspirzhny, A. V., Gogan, P., Horcholle-Bossavit, G., & Ty¢-Dumont, S. (2002).
Neuronal morphology data bases: morphological noise and assesment of data
quality. Network: Computation in Neural Systems, 13(3), 357-380.

Scorcioni, R., Lazarewicz, M. T., & Ascoli, G. A. (2004). Quantitative
morphometry of hippocampal pyramidal cells: differences between anatomical
classes and reconstructing laboratories. Journal of Comparative Neurology,
473(2), 177-193.

MorphoUnit (SciUnit-based morphology testing):
https://github.com/appukuttan-shailesh/morphounit

Exercise

Download and examine the following three CA1 pyramidal cell morphologies (use
the “standardized” version). What are your thoughts on the appropriateness of
each for simulation?

e http://tinyurl.com/neuromorpho-n123

e http://tinyurl.com/neuromorpho-calsynteninKO

y

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 59

Didactic Presentations The NEURON Simulation Environment

Page 60 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NMODL

The NEURON Model Description Language
Add new membrane mechanisms to NEURON

Density mechanisms Point Processes
* distributed channels * electrodes
* ion accumulation * synapses

Described by
* differential equations
* kinetic schemes
* algebraic equations

Advantages
* Specification only--independent of solution method
* Efficient--translated into C
* Compact
* One NMODL statement — many C statements
* Interface code automatically generated
* Consistent ion current / concentration interactions
 Consistent units

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 61

Didactic Presentations The NEURON Simulation Environment

NMODL general block structure

What the model looks like from outside

NEURON {
SUFFIX kchan
USEION k READ ek WRITE ik

RANGE gbar,
}
What names are manipulated by this model
UNITS { (mv) = (millivolt) . . . }
PARAMETER { gbar = 0.036 (S/cm2) <0, 1e9> . . . }
STATE { n . . .}
ASSIGNED { ik (mA/cm2) . . . }

Initial default values for states

INITIAL {
rates(v)
n = ninf

Calculate currents (if any) as function of v, t, states
(and specify how states are integrated)

BREAKPOINT {
SOLVE deriv METHOD cnexp
ik = gbar * nnA4 * (v - ek)
}

State equations

DERIVATIVE deriv {
rates(v)
n' = (ninf - n)/ntau

}
Functions and procedures

PROCEDURE rates(v(mV)) {

}

Page 62 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

UNIX nrnivmodl
MSWin %
L
mkmrndll
[NERON |

Chioose directory [cortaining mmod files) for creating nrnrmech.dil

| Recert direc‘torief\ |

Choose directary r\T Guit

Result: NEURON has a new mechanism

lzomify

File Edit | Build | Tools Graph ‘Vector ‘Window ||
|single compart
Cell Builder

=
MetWork Cell

MetWork Builder
Linear Circuit
Channels

Close Hide

Soma

Density mechanism

NEURON {
SUFFIX leak
NONSPECIFIC_CURRENT i
RANGE i, e, g

}

PARAMETER {

g = 0.001 (mho/cm2) <
e = -65 (millivolt)
}
ASSIGNED {
i (milliamp/cm2)
v (millivolt)
}

BREAKPOINT {
i=g9g%(v -e)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hi

Point Process

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i
RANGE i, e, r

}

PARAMETER {

0, 1e9> r 1 (gigaohm) <le-9,1e9>

e 0 (millivolt)
}
ASSIGNED {

i (nanoamp)

v (millivolt)
}

BREAKPOINT {
i=(0.001)*(v - e)/r
}

nes, and R.A. McDougal, all rights reserved Page 63

Didactic Presentations

The NEURON Simulation Environment

Density mechanism Point Process
NMODL
NEURON { NEURON {
SUFFIX leak POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i NONSPECIFIC_CURRENT i
RANGE i, e, ¢ RANGE i, e, r
} }
GUI
B Single M |=TES -oixi
Close Hide Close Hide
SelectPointProcess
Show
Shuntp]
at: somail.5)
—
Interpreter
soma { p objref s
insert leak soma s = new Shunt(0.5)
g_leak = 0.0001 s.r =2
}
print soma.i_leak(0.5) print s.1i
soma.insert('leak') s = h.Shunt(soma(0.5))
soma.g_leak = 0.0001 s.r =2
print soma(0.5).i_leak

lon Channel

NEURON {
USEION k READ ek WRITE ik

}

BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*n*n*n*n*(v — ek)

}

DERIVATIVE states {
rate(v*1(/mV))
n’ = (inf - n)/tau

}

(mM)
20 —

(mv)
40

lon Accumulation

NEURON {
USEION k READ ik WRITE ko

}
BREAKPOINT {
SOLVE state METHOD cnexp

DERIVATIVE state {
ko' = ik/fhspace/F*(1e8)
+ k*(kbath — ko)

(mA/cm2)
3

soma.ik(0.5)

Page 64

soma.ek(0.5)

10

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Vesicle

Achase
a o
o
Ach)

ica

Internal Free Calcium

Saturable Calcium Buffer

STATE {
Vesicle Ach Achase Ach2ase X Buffer[N] CaBuffer[N] Ca[N]

KINETIC calcium_evoked_release {
: release

~ Vesicle + 3Ca[0] <-> Ach (Agen, Arev)
~ Ach + Achase <-> Ach2ase (Aase2, 0) : idiom for enzyme reaction

~ Ach2ase <—> X + Achase (Aase2, 0) : requires two reactions
: Buffering

FROMi=0TON-1{
~ Cali] + Buffer[i] <-> CaBuffer[i] (kCaBuffer, kmCaBuffer)
}
: Diffusion
FROMi=1TON-1{
~ Cali-1] <->Ca[i] (Dca*a[i-1], Dca*b[i])
}
:inward flux
~Ca[0] << (ica)
}

UNITS Checking

NEURON { POINT_PROCESS Shunt ... }
PARAMETER {

e = 0 (millivolt)
r =1 (gigaohm) <le-9,1e9>

ASSIGNED {
i (nanoamp)
v (millivolt)

BREAKPOINT {
i=(v-e)r

Unitsareincorrect inthe"i=.." current assignment.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 65

Didactic Presentations The NEURON Simulation Environment

BREAKPOINT {
i=(v-e)r

Theoutput from
modlunit shunt
IS
Checking units of shunt.mod
The previous primary expression with units: 1-12 coul/sec
is missing a conversion factor and should read:
(0.001)*()

at line 14 in file shunt.mod
i=(v-e)r<>

Tofix the problem replace the line with:
i=(0.001)*(v —e)r

What conversion factor will make the following consistent?

nai’ = ina /' FARADAY * (c/radius)
(uM/ms) (mA/cm2) / (coulomb/mole) / (um)

Page 66 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 67

Didactic Presentations The NEURON Simulation Environment

Page 68 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Don't reinvent the brain

Using ModelDB and other archives for your research

medougal

DB Help
User account

Loy

Register

Find models by
Model name
First autho

Each author
Region(circuits)
Find models for
Cell type

R

Gene

Transmi

Topic

Simulators
Methods

Find models of
R

ic Networks

Neurons

synapses (gap

Robert A. McDougal
Yale School of Medicine

8 August 2018

»

niEa ModelDB

% from neuron import h, rxd

!Smeno}L‘ import neuron.rxd.node as node
from matplotlib import pyplot
import time

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2(

Download zip file Auto-launch

h.load_file('stdrun.hoc')

soma = h.Section()
Help downloading and running models somatl 18
Model Information ~ Mods|File Cilaions Model Views ® Simulation Platiorm 3D Print T
Soma.nseg = 11
Accession:87284 dend = hSection()
The model simulations provide evidence obligue dendrites in CA pyramidal neurons are suscepible to hyper-excitabilty by amyloid beta block cand.Ehnnect (soas)
channel, 1A. See paper for details. dend.L = 50
dend.diam = 2
Reference e i
1. Morse TM, Camevale NT, Mutalik PG, Migiore M, Shepherd GM (2010) Abrormal excitabilty of oblique dendrites implicated in early Alzheir "nseE

‘computational study Front. Neural Circuits 4:16 [PubMed]
Model Information (Click on a fink to find other models with that property)
Model Type: Neuron or other electrically excitable cell

def print_nodes():
print ', '.join(str(v) for v in node._states)

print 'defining rxd'
Brain Region(s)Organism: region = rxd.Region(h.allsec(), nrn_regio)
ca = rxd.Species(region, name='ca’, d=1, charge=2, initial
Channel(s): | Na,t; | L high threshoid; | N; | T low threshold; | A; I K: | b; reaction = rxd.Rate(ca, -ca * (1 - ca) * (0.3 - ca))
Gap Junctions:

Call Type(s): Hippocampus CA1 pyramidal cell

print ‘initializing’

Receptor(s): h.finitialize()
Gene(s) "
Sin Morse etal. 2010 - root: soma - Morse et al. 2010
it !

JeeAst XY e 035 orse TM, Camevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal
cacum exciability of oblique dendites implicated in early Alzheimer's: a computational study Front.
(cacumm.mod) 030 Neural Circuits 4:16 Puses

% cagk (cagk.mod; 025

g, 4 025 References and models cited by this paper References and models that cite this paper
cal (cal2.mod) 5

% Bo.20 Acker CD, White JA (2007) Roles of I(A) and morphology Culmone V, Mighore M (2012) Progressive effect of beta
can (can2.mod) s pyranidal ceil pyramidal

#cat (cat.mod) Soss dendies. JC "
ds (dlistemod) Boso punved) Front Comput Neurosci§:52 oumel Puiect

%hd (h.mod) i « Roles of I(A) and morphology in AP prop.in CA1 + CA1 pyramidal neurons: efects of Alzheimer

Skad (kadist.mod) e (Culmone and

b o . — MeDougal RA, Morse T Hines ML, Shepherd GM
akabay 20 0 200 400 600 2007400 (€00 500 Anderton BH, Calahan L, Coleman P. Davies P, Flood D, (2015) ModeiView for ModelDB: oniine preseniatin of

#kap (kaprox.mod) Distance from root Jicha GA, Onm T, Weaver C model struct

| M —— Aizheimer's disease and factors that may underlle these Pubiiet

na3 (na3n.mod) 0 0313714 Shingsa: Fog Neuroblol SKS.08 it « ModelView: online structural analysis of
) 3 ‘computational models (McDougal et al. 2015)
odel]

e

modeldb.yale.edu

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 69

Didactic Presentations

J Comput Neurosci @c ark
DOI 10.1007/s10827-016-0623-7

Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience

Robert A. McDougalI - Thomas M. Morse' - Ted Carnevale' « Luis Marenco > «

Rixin Wang3’4 + Michele Migliorel’5 « Perry L. Miller?** . Gordon M. Shepherd"
Michael L. Hines'

Received: 9 June 2016 /Revised: 17 August 2016 / Accepted: 30 August 2016
© Springer Science+Business Media New York 2016

Abstract Neuron modeling may be said to have originated ~ groups (Allen Brain Institute, EU Human Brain Project, etc.)
with the Hodgkin and Huxley action potential model in 1952 are emerging that collect data across multiple scales and inte-
and Rall’s models of integrative activity of dendrites in 1964. grate that data into many complex models, presenting new

What is in ModelDB?

Models for:
° 178 Ce” types ‘PPU‘L ampus CA1 pyramidal cell
. Detalled Neuwnal Models
@ 16+ species I L high threshold

. Act10n Potentlals ""wmu,,,mu
@ 54 ion channels, pumps, etc Pusne '

} 0 Deng,

. . ’ D l“\\
@ 145 topics (Alzheimer's, STDP, etc) Glut am
. i . ‘\\L\“O\\\f Grlbtd“A(prog

@ 24+ mammalian brain regions O “NE
1.350 published models from 88 Olaw“ I «\\o\d
simulators Tempo H‘LI \ciunX at\T\

INapMATLAB
e 635 NEURON models Sllnpllf\lxggt;\h!;%CIS Paﬁd ics
@ 372 “realistic” networks °n Chapy, alciu™

el Kj; e
. . tic,
@ 54 connectionist networks ’

Numbers are as of July 22, 2018

Page 70

The NEURON Simulation Environment

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

On reproducibility

“Non-reproducible single occurrences are of no significance to science.”

— Karl Popper in The logic of scientific discovery, 1959.

What is needed for a model to be reproducible?
Model

@ an approximation of the system of interest
e.g. a model organism or a complete statement of the properties of the
model in mathematical or computable form

Experimental protocol
@ what was done with the model to produce the data

Science builds upon previous work; in order to do that, the previous work needs to
be reproducible.

Models are complicated

100+ > 100 K

506tg/99 5% 3.0% “

Files per Model File Size

@ 38.5% of ModelDB models have over 20 files; 24.2% of files are over 5K.
@ It is often hard to fully describe this complexity in a paper.

@ Any bugs, typos, errors, or omissions might completely change the dynamics.

Distributions from ModelDB, Fall 2013. A model was counted as having 0 files if it was not hosted on ModelDB.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 71

Didactic Presentations The NEURON Simulation Environment

Model sharing helps, but only reuse what you understand

The easiest way to replicate someone else’s results — a first step toward building
on them — is to get their model code from a repository such as ModelDB.
But beware:

e They may be solving a different problem than you (with respect to species,
temperature, age, etc).

@ Their code may have bugs.

To reduce the risk of problems:
@ Read the associated paper.
@ Compare the model and results to other similar models.
e Examine the model with ModelView and/or psection.
@ Test ion channels individually.
°

Collaborate with an experimentalist.

Reproducibility in Computational Neuroscience
Models and Simulations

Robert A. McDougal, Anna S. Bulanova, William W. Lytton

Abstract—Objective: Like all scientific research, computational build novel theoretical frameworks. A century ago, work by
neuroscience research must be reproducible. Big data science, Lapicque led to the development of integrate-and-fire models
including simulation research, cannot depend exclusively on [4]. A half century later, Hodgkin and Huxley provided a

j 1 articl the thod t ide the shari d
Jt::;:;ar:;c;: ::q:isred §0rni‘iplf:)duc(;bill’il;;jﬂ ¢ the sharing anc 4oiailed multiscale biophysical model of the squid axon [2],

Simulators (NEURON, MCell, XPPAUT, NEST, etc)

Multi-simulator interoperability (NeuroML, SWC, PyNN, NeuroConstruct,
etc)

Shared resources (Neuroscience Gateway, Simulation Platform)

Sharing resources (ModelDB, OpenSourceBrain, NeuroMorpho.Org, etc)
More: NSDF, NeuroLex, NIF, MIASE, licensing, etc

McDougal et al (2016) IEEE TBME 63(10):2021-2035; doi:10.1109/ TBME.2016.2539602

Page 72 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Neurobiological context

Morphology Metadata NeuronDB

@ NeuroMorpho.Org %

cell types, channels,
receptors, genes,
transmitters, model
topics, publication

Electrophysiology Model Entry Microconnectome

ElllEUE E

Hippocampus CA1 Pyramidal Cells

Every model is a review of

the literature.
Ia 47 models: 2796, 7386, 9769, 19696,

ModelDB reveals what has 20212, 32992, 44050, 55035, ...
been modeled in each cell
type. lkca 11 models: 20212, 87284, 115356,

119266, 123927, 125152, ...

Comparing models shows

what mechanisms are m
considered critical by the
community.

16 models: 2937, 20212, 66268,
112546, 115356, 118986, 119266, ...

26 currents, 6 transmitters, 10 receptors

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 73

Didactic Presentations The NEURON Simulation Environment

Finding models

hin Q

hinf

hinf-h

hines

hinton.hoc

hint

Authors

Hines ML ” View all

Hines M

Cell Type Olfactory Mitral Cell (Shen et al 1999)
Entorhinal cortex stellate cell Arteriolar networks: Spread of potential (Crane et al 2001)
Region Olfactory Mitral cell: AP initiation modes (Chen et al 2002)
Entorhinal cortex Local variable time step method (Lytton, Hines 2005)

Transmitter Olfactory bulb mitral cell: synchronization by gap junctions
Norephinephrine (Migliore et al 2005)

Ephinephrine Discrete event simulation in the NEURON environment (Hines
Dynorphin and Carnevale 2004)

Receptor Spatial gridding and temporal accuracy in NEURON (Hines and
Dynorphin Carnevale 2001)

Concept _— e S T

Tutorial/Teaching

@ Search box on the top-left of every page.

@ Do full text or attribute searches.

@ Word completions (based on ModelDB entries not English) and attribute results updated as you type.
@ Advanced search and browsing are also available.

ShowModel features

i) iz ModelDB])

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

M OROME, B 0)

S e e
o (11)

tofnd

Model Type: Neu
Brain Regloni(s)Organism:
Cell Type(s):

s
= (12)

Genels):

‘Search NeuronD for information abo: Hip

(13)

o= -

(1) Search models. (2) Browse models. (3) Link to download the entire model code.

(4) Auto-launch a NEURON simulation (requires browser configuration). (5) View model files.
(6) Find models and papers cited by this model's paper, or that cite this model. (7) ModelView:
visualize model structure. (8) Simulation platform (5 minutes of remote desktop access to
experiment with the model). (9) 3D printable versions of cells from the model (in 3DModelDB).
(10) Description of model. (11) Paper(s) describing or using model. (12) Searchable metadata.
(13) Links to NeuronDB (channel distributions etc within cell types).

Page 74 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

ShowModel features

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Download zip file Auto-launch

Help downloading and running models

Model Information Model File Citations Maodel Views @ Simulation Platform ~ 3D Print

Download the displayed file (1 4)

o/ This is the readme for a model used in the paper
0O CA1_abeta

Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2018)
O translate Abnormal excitability of oblique dendrites implicated in early

” Alzheimer's: a computational study Front. Neural Circuits 4:16
[y readme. htm =

[cacumm.mod

The model code was contributed by Tem Morse. It was created (see
D cagk.mod * paper for details) from earlier models (especially Migliore et

D cal2.mod * al. 2085 and calcium channels from Hemond et al. 2088) with
modifications and additions by Tom Morse and Ted Carnevale with

D can2.mod * interaction with the other authors. It requires the NEURON simulator
to be installed (available at http://www.neuron.yale.edu).

B catmod * (15) (16)

o distr.mod * To re:reate.'Figures from the paper, start the simulator by
auto-launching from ModelDB *OR*

B h.mod

Bipulse2 mod * T e

D kadist.mod In the expanded archive's folder compile the mod files using the
command "nrnivmodl”

D kaprox.mod run the simulation with the command "nrngui mosinit.hoc”

B kdrca1l.mod :
Under Windows systems:

pnad3nmoed 000 | seseemesememeceeceeeeo

Compile the mod files using the "mknrndll" program.
A double click on the simulation file

eta mosinit.hoc

B naxn.mod *

(14) Download the currently selected file. (15) Directory browser, showing model files.
(16) View pane for the currently selected file.

|dentifying existing reuse

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Download zip file Auto-launch
Help downloading and running models

Model Information Model File Citations Model Views ® Simulation Platform ~ 3D Print

Download the displayed file

Other models using cagk.mod:

L/ This is the rea A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010) B
N CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
L CA1_abeta Morse T CA3 pyramidal neuron (Safiulina et al. 2010)
L translate Abngpy taf CA3 pyramidal neuron: firing properties (Hemond et al. 2008)

o

eime Neuronal dendrite calcium wave model (Neymotin et al, 2015)

L readme.html
L wod/ The model code was contributed by Tom Morse. It was created (see
L cagk.mod * paper for details) from earlier models (especially Migliore et
al. 2005 and ca .

L cal2.mod * modifications aj Other models using naxn.mod:
. interaction wit] CA1 pyramidal neuron: effects of R213Q and R312W Kv7.2 mutations (Miceli et al. 2013)
L can2.mod to be installed| CA1 pyramidal neuron: functional significance of axonal Kv7 channels (Shah et al. 2008)
L cat.mod * CA1 pyramidal neuron: rebound spiking (Ascoli et al.2010)
L distr.mod * To '"f"eate_ﬁg CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011)

distrmod auto-launching 1 GA1 pyramidal neuron: signal propagation in oblique dendrites (Migliore et al 2005)

L h.mod Under unix syst CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)

: | [, CA1 pyramidal neurons: effect of external electric field from power lines (Cavarretta et al. 2014)
= I‘m In the expanded| CA1 pyramidal neurons: effects of Alzheimer (Culmone and Migliore 2012)
L kadist. mod command g CA1 pyramidal neurons: effects of Kv7 (M-) channels on synaptic integration (Shah et al. 2011)
L kaprox.mod run t at] CA1 pyramidal neurons: effects of a Kv7.2 mutation (Miceli et al. 2009)

rder Wind Ca1 pyramidal neuron: reduction model (Marasco et al. 2012)
L kdrca1.mod under Wind %S 1 Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)
L na3n.mod Compile the mod Effects of electric fields on cognitive functions (Migliore et al 2016)

L naxn.mod * A double click Neuronal morphology goes digital ... (Parekh & Ascoli 2013)

mosinit.hoc Spine head calcium in a CA1 pyramidal cell model (Graham et al. 2014)
L zcaquant.mod will open the sImerrarTTOTWITTOW
L aBeta.hoc Under MAC 0S

Asterisks in the file browser indicate that the file is reused in other models; click
the asterisk to see a list of the other models.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 75

Didactic Presentations The NEURON Simulation Environment

|CGenealogy: ion channel metadata

General data

Model Information | Model File Citations =~ Model Views @ Simulation Platform = 30 Print

o ICG id: 2464
e o ModelDB id: 87284

e o Reference: Morse TM, Carnevale NT, Mutalik PG, Migliore M,

= CA1_abeta : Caleium activated K channel.

u e . Shepherd GM (2010): Abnormal Excitability of Oblique Dendrites
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82 ” ” ° ;
Implicated in Early Alzheimer's: A Computational Study.

= translate
TS ¢

& readme.htm| (molar) = (1/liter)

& cacumm.mod t

Metadata classes

unITS {
(nV) = (nillivelt)
(mA) = (nilliamp)

JpS——)T e . Anlfnal Model.: rat
wcatmod * ¥ e Brain Area: hippocampus, CAl
wdistrmod * NEURON { e Classes: KCa
©h.mod SUFFIX cagk o lon Type: K
f.mod USEION ca READ cai . o
v ipulse2.mod * USEION ¢ READ ek WRITE ik e Neuron Region: unspecified
gbar, gkea, i g
& kadistmod GLOBAL oinf, tau e Neuron Type: pyramidal cell
& kaprox.mod i .
L kdrcat.mod s ¢ d g"st'me Q: Q4 (SI-?-W(}
«nain.mog e L e e o Subtype: not specifie
& naxn.mod * }
. zcaquant.mod PARAMETER { Metadata generic
© aBetahos celsivs (degC)
v (, .
1 2dd_cahoc ghar=.01 (nho/cn2) : Maximum Permeability e Age: 7-14 weeks old.
o cai (mM)

© bAP_peak_vecs.hoc
= c91662.ses

= C91662_Link.txt

« cond_reporthoc

e Comments: Calcium activated k channel, modified from
moczydlowski and latorre (1983). From hemond et al. (2008),
model no. 101629, with no changes (identical mod file). Animal

model taken from chen (2005) which is used to constrain model.
& control_boxes.hoc

Channel kinetics from previous study on hippocampal pyramidal
v distribute_currents.hoc @
e) neuron (hemond et al. 2008)
«fia RSINED (o e Runtime: 76.722

When viewing most mod files describing an ion channel, an ICGenealogy button
appears. Clicking this button loads the corresponding page of the ICGenealogy
database which shows curated information about the channel model (how it was
derived, information about the underlying data, etc) and response curves.

Podlaski et al., 2017. doi:10.7554 /eLife.22152.001

ModelView

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse et al. 2010)

Download zip file Auto-launch

Help downloading and running models

Model Information Model File Citations @ Simulation Platform ~ 3D Print

Accession:87284

The model simulations provide evidence oblique dendrites in CA1 pyramidal neurons are susceptible to hyper-excitability by amyloid beta block of the transient K+
channel, IA. See paper for details.

Reference:

1. Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM (2010) Abnormal excitability of oblique dendrites implicated in early Alzheimer's: a
computational study Front. Neural Circuits 4:16 [PubMed]

Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): | Na,t; | L high threshold; | N; | T low threshold; | A; | K; | h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Pathophysiology; Aging/Alzheimer's;

Implementer(s): Carnevale, Ted [Ted.Carnevale at Yale.edu]; Morse, Tom [Tom.Morse at Yale.edu];

Search NeuronDB for information about: Hippocampus CA1 pyramidal cell; | Na,t; | L high threshold; | N; | T low threshold; | A; | K; | h;

Page 76 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

0

Morse et al. 2010 - & root: soma -

194 sections; 974 segments X-Y X-Z Y-Z

#1 cell with morphology

0 artificial cells

0 NetCon objects

0 LinearMechanism objects

®Temperature: 35°C
#Density Mechanisms

#1 point processes (0 can
receive events) of 1 base
classes

#7 files shared with other
ModelDB models

®References 200 0 200 400 600

McDougal et al, Neuroinformatics 2015

a Morse et al. 2010 = [root: soma - | b Morse et al. 2010 =|e
O UISUIILL vaIUTS Ul 1158y N = Density Mechanisms -
=18 inserted mechanisms XY XZ |-Y-Z B8 mechanisms i use
Ra Ra
cm em
“pas pas
¥ na_ion na ion
®k_ion K ;m
ca_ion ca ion
¥ cacum (cacumm.mod) - ca;um (cacumm.mod)
o -
‘ ‘Cﬁlgr (%lka;’d) apicl501(0.833333) READs: ica
#cal (cal2.mot (520.5, -28.46, i
#can (can2.mod) 1240 WRITE&' fo ¢
3 Mechanisms Nonspecific Current
®cat (cat.mod) present: Present in 193 sections
ds (distr.mod) Re B
 ds (distr.mod) 200 0 200 400 |iem =cagk (cagk.mod)
“hd (h.mod) p2s) READSs: cai, ek
® . na_ion T
kad (kadist.mod) K_ion WRITEs: ik
“kap (kaprox.mod) cton Present in 193 sections
#kdr (kdrcal.mod) o ;
i cagk Possibly temperature
*na3 (na3n.mod) cal dependent
] can 1
“nax (naxn.mod) . at *cal (cal2.mod) A
ds
hd
kad
kap
kdr
na3

McDougal et al, Neuroinformatics 2015

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 77

Didactic Presentations

Morse et al. 2010

“can (can2.mod)
gcanbar

“cat (cat.mod)
gcatbar

ds (distr.mod)

“hd (h.mod)
ghdbar
vhalfl

“kad (kadist.mod)

gkabar

“kap (kaprox.mod)

gkabar

“kdr (kdrcal.mod)

gkdrbar

2 root: soma

X-Y

X-Z

“na3 (na3n.mod)

sh
gbar
ar
nax (naxn.mod

)

McDougal et al, Neuroinformatics 2015

Morse et al. 2010

B7fi

iles shared with other

ModelDB models
“cagk.mod

A model of unitary
responses from A/C
and PP synapses in
CA3 pyramidal cells
Baker et al. 2010)
CA1 pyramidal
neuron: effects of
R213Q and R312W
Kv7.2 mutations

Miceli et al. 2013)

CA3 pyramidal neuron
(Safiulina et al. 2010)

neuron: firing
properties (Hemond et
al. 2008)

#distr.mod
¥ cal2.mod

¥ can2.mod

¥ cat.mod
*ipulse2.mod

* paxn.mod

McDougal et al, Neuroinformatics 2015

Page 78

Copyright © 1998-2019 N.T.

The NEURON Simulation Environment

Morse et al. 2010

Y-Z

0.35
0.30
0.25
©
£0.20
©
B4
©0.15

o
To.10

apic[38](0.681818)
(636.2,-6.100, -64.31)

200 400 600 800
Distance from root

0.313714

Morse et al. 2010 - e

(Hemond et al. 2008)
¥ distr.mod
¥ cal2.mod
¥ can2.mod
¥ cat.mod

*ipulse2.mod

® naxn.mod

= References

Paper in Front. Neural
Circuits

ModelDB Entry
Run Protocol

= Compiling
cd CA1_abeta
nrnivmodl

ZLaunching NEURON
nrngui -python

“Running
from neuron import h
h.load_file("mosinit.hoc")
h.figland2()

Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

What described where?
Beware: comments, if statements.

Static
Analysis of
Source Code
Metadata .
from Simulator

ModelDB Introspection
Simulator?
Plargzri?or Ask the simulator what it did.
Species? ModelView What morphology?
Channels? What mechanisms?
Context?

Provides structured data from
unstructured code.

How do people use ModelDB?

@ Find a model described in a paper, download it, and experiment to
understand the model's predictions.

@ Find a model described in a paper. Use ModelView to understand the
model’s structure.

Locate models and modeling papers on a given topic.

Locate model components (e.g. L-type calcium channel) for potential reuse.

Search for simulator keywords (e.g. FlnitializeHandler) to find examples of
how to use them.

You can help by sharing your model code on ModelDB after publication.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 79

Didactic Presentations The NEURON Simulation Environment

Sharing your models

r g .

SHade e

= |
CHavum

MR D o T AR TTIRr i
lor & e
ST srwa ol D omale U odem une sl omp
™ ' . " i m v o

il maie

AT LA TAS, TSN AT SR W TN NI SMTIEL ST Tl 3 (D

(R T I TR TN TEE R L R T S TR LR L Y]

[t . LR I

e g, "R Bt e

McDougal, Dalal, Morse, Shepherd submitted

' ModelDB

Advanced search ;

ModelDB Help
User account

Login Submit New Model

Register
Find models by Required information:

Model name

First author Your full name:
Each author

Region(circuits) Your email address:

Find models for —
Zip file of model code: | Choose File |No file chosen

Cell type

Current Read-Write access code (15 character max):
Receptor ord to only access fhis model

Gene

Transmitters
Topic

Simulators
Methods

Find models of
Realistic Networks You maym with just the above information, but to make your model more discoverable, please fill out as much of the next section as you can. Hote

blc.

ivate until you request the ModelDB administrato

Neurons Your mode! will

Electrical synapses (gap
junctions)

Chemical synapses
lon channels
Neuromuscular junctions

Click the button to autom:

d. approve, and
Axons

Other resources
ModelDB related resources

Additional information: iore information wit help your model mor

Computational neuroscience

McDougal, Dalal, Morse, Shepherd submitted

Page 80 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Sharing your models

Automatic keyword identifier

Please paste your paper abstract here.

The integrative properties of cortical pyramidal dendrites are essential to the neural
basis of cognitive function, but the impact of amyloid beta protein (abeta) on these
properties in early Alzheimer's is poorly understood. In animal models,
electrophysiological studies of proximal dendrites have shown that abeta induces
hyperexcitability by blocking A-type K+ currents (I(A)), disrupting signal integration.
The present study uses a computational approach to analyze the hyperexcitability
induced in distal dendrites beyond the experimental recording sites. The results show
that back-propagating action potentials in the dendrites induce hyperexcitability and
excessive calcium concentrations not only in the main apical trunk of pyramidal cell
dendrites, but also in their oblique dendrites. Evidence is provided that these thin
branches are particularly sensitive to local reductions in I(A). The results suggest the
hypothesis that the oblique branches may be most vulnerable to disruptions of I(A) by
early exposure to abeta, and point the way to further experimental analysis of these
actions as factors in the neural basis of the early decline of cognitive function in
Alzheimer's.

Sancel m

McDougal, Dalal, Morse, Shepherd submitted; abstract from Morse et al, 2010.

Sharing your models

Automatic keyword identifier: results

Deselect keywords that do not describe the model, then press the button to accept the
rest.

¥ Neuron or other electrically excitable cell

¥ Dendritic Action Potentials

@ | Potassium

¥ Action Potentials

@ Calcium dynamics

YA

@ Active Dendrites

@ Aging/Alzheimer's

Accept selected keywords

McDougal, Dalal, Morse, Shepherd submitted

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 81

Didactic Presentations

The NEURON Simulation Environment

Sharing your models

.
{ommeta]

Advanced search

Other Neuron

Model Neurotransmitters

Enr=D)

Other Neurotransmitter

Model Receptors
Other Receptor
Model Currents

Other Current
Gap Junctions
Gene

Other Gene
Model Type

Other Model Type
Model Concept

Other Concept
Simulator software
Other Simulator
Region Organism

Implemented by

x | Potassium
xIA

v

[&
I

x Neuron or other electrically excitable cell
v

x Dendritic Action Potentials
x Action Potentials
x Calcium dynamics
x Active Dendrites
x Aging/Aizheimer’s
N

[=9
[9
EE—— |

McDougal, Dalal, Morse, Shepherd submitted

@SenselabProject:

newly available models

SenselLabp

Senselab

SUareal ande st

N

Soclad comans 3 st o dolaboncs
. pocdi=g asprdmamal nd thraelical
SMITeEs et ra e SHanhey A th

o s con s el ooz
Do Janww 2008

2P ove nd Wi

Page 82

Taczla

455

Folcw iy

1"

Polzeesry

366

L

15

Moaranta

0

Lrats

0

Twaaets Twaats & raplias Madia

Saranlah VEC o Fieed o Jd s

How n Yok D2ovme 3l ot eodma ooning wils o anglo
contectiosi=kalan 5 Tyl 20

medset etk 2d 2G0T

re s 4
Sensolab *tersm il LTy

Mo e o s b Nercaene e eechooee et 1S nana w w200 7
([R5 5 ST R R R M

(% S |
Sarmanlnh OS50 w0 obProoct - Jd

Hzw 0 09000 DITHLMIN 20 " X0ZONZory NG~ 0006 2000 L3710 Lo g e
thechobre 13anms st 2 200 5

rsdalete Lals ad

SN

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Other resources

NeuroMorpho.Org

— ' T Sy =7
A 2 L)
(€@ NeuroMorpho.Org % —
§ n T
Version 6.1 - Released: 05/13/2015 - Content: 31982 neurons —
:
3 Tarim
" Cans i Janibe
e b
RS P S
o bk
' LIV
- e
|wwx- |
AT
R O)
- s
Include Signature un b
Get above files zipped
A Details about selected neuron
NeuroMorpho.Org ID : NMO_01837 .
Neuron Name : R4
Archive N : Lewi: B .
e —— Tools p Miscellaneous p Import 3D

@ NeuroMorpho.Org is home to 86,893 reconstructed neurons from 514 cell
types and 53 Species as of july 22, 2015.

@ Warning: not every morphology was reconstructed with the intent of being in
a simulation. Before using: rotate to check for z-axis errors, check to make
sure the diameters are not all equal.

@ Use the Import 3D tool to import morphologies into NEURON. For details,
see: neuron.yale.edu/neuron/docs/import3d

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 83

Didactic Presentations The NEURON Simulation Environment

Channelpedia (Channelpedia.epfl.ch)

Nav1i.3
Home to information
about ion channels.

Introductions

Many channels have one
or more associated
models (e.g. different
species or cell types); all
— are downloadable as

MOD files.

= Shows gating variable and
1 channel response to

E— voltage clamp for each
model.

.ac.uk/biomodels-main)

EMBL-EBI

ioMode e Models S 0
BIOMD0000000073 - Lelou ircClock_DD
Download SBML | [Other formats (auto-generated) | | [Actions | Send feedback

Nodel Overiew I M Physicalentics Parameces I Coration

Leloup JC, Goldbeter A
Toward a detailed computational model for the mammalian circadian clock.
Proc. Natl. Acad. Sci. U.S.A. 2003 Jun; 100(12): 7051-7056

Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelies, Campus Plaine, C. P. 231, B-1050 Brussels, Beigium. [more

Publication ID: 12775757

Original Model: set#1

jnml BIOMDOOOO000073_LEMS.xml —-neuron

Biomodels model (SBML) =—> LEMS model —> MOD file

Jjnml —-sbml-import BIOMDO000000073.xml 1000 5

@ Biomodels is a systems biology model repository.

@ Models are in SBML but can be converted to MOD files via e.g. jNeuroML
(github.com/NeuroML /jNeuroML). Test converted models before using in a
larger model. Edits will likely be necessary to get them to interoperate with
other mechanisms.

@ A native SBML importer for NEURON's rxd module is under development.

Page 84 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Open Source Brain (OpenSourceBrain.org)

0 neuroConstruct v1.6.0 - /home/ramcdougal/Downloads/PurkinjeCell-master/neuro
opensourceBrAIN [NEEENED File |Project] Settings Tools. Help
[y Generate positons e stwork _, ff—
= Generate NEURON (hoa '

e
Output | Generate | Wsualisation | Export
Regions | Cell Groups.

Purkinje Cell pe schutter and Bower 1994 [e

Generate PSICS.
Generate PyNN

[¥] List Previous Simulations
Rodent / Cerebellum / Purkinje cel De Schu 1

20 Intial mplementation in NeurobiL of the Purkinje Cell model
utter, E. and Bower, . M. (1894). Based on Arnd Roth
el afs conversion o the original GENESIS cods to NEURON,

Note: conversion not fully complate. Press Valldate for datals.

TRETS (s thare re on standing lssues about getting GENESS and
—— : = N . NNEURON behaviour of the Purkinje cell to match. Contact P.
Description » Project Description: Gleason or A Roth for more detals on currant status of this
sia ol
H

ChannelML files need to be updated to post vL.7.3 format (though
they still work file with exsting ¥SL mappings for NEURON &
ENESIS)

i or purk2 Somaonly Somaonly_all Somaonly_ca
Cell Types in project:
LEE el Somaonly_CaP SomaOnly_CaT SomaOnly_KA Somaonly_kdr

cell Groups: samplecellGroup OrigchansCellGroup AllchansCML

Default Simulation Configuration Bothsimulators Alichans

Simulation Configurations:
AllchansBothsims BigCell BigCell-RecordAllSegs

Project File Version: neuroConstruct v1.5.3
An initial implementation in NeuroML of the Purkinje Cell model from De Schutter, E. and et nedilegs 12:22:34, Thursday August 27, 2015
Bower, J. M. (1994). Based on Arnd Roth el al's conversion of the original GENESIS code to

@ Open Source Brain promotes collaborative model development via github.

@ Models are typically in NeuroML or neuroConstruct format; neuroConstruct
(neuroConstruct.org) converts both formats to NEURON.

@ The conversion process places different ion channels in different MOD files,
which allows extracting model components.

NeuroElectro (NeuroElectro.or

%)ﬁ JlewroElectr o/\ NeuroElectro Publications

About Neuron Types Electrophysiology Properties Articles FAQs Data/AP| Contribute
resting membrane potential
Common definition: Membrane potential at the onset of whole-cell recording
Electrophysiological values of resting membrane potential across neuron types from literature:

Standardization criteria:
« Values unchanged from those reported. Refer to individual articles for specific definitions and calculation methodologies.

Legend: D 3
« Blue dots = text-mined values human curated; Orange dots = text-mined values not human curated = View data in table form
Interactivity:

= Mouse over neuron report data points and click to view corresponding publication = Report miscurated data

« Click on neuron name axis labels (€.g. Dentate gyrus granule cell) to view corresponding neuron page

= Zoom in on a section of plot by dragging cursor. Zoom out by double clicking on plot
Value: 57.79 (mV)

Neuron: + CAL pyramidal cell R e e ——
rite: _ Differential corticosteroid modulation of inhibitory synaptic currents .
A in the dorsal and ventral hippocampus. ale) o
of Authors: Maggio N; Segal M 9 o o
o Journal: 3, Netrosci,, 2009 8
o 3 o
. . e Se e
o AN .
H ' o o’
ol ol il el
= 3 1 . ®
s ® . .
a e
@ o
e
.
.

IVOSS‘;/ cell
e
¥ sufsn

@ NeuroElectro archives experimentally measured electrophysiology values for different cell
types; it shows the spread and allows comparing values across different cell types.

@ Read the paper associated with a value to understand: species, experimental conditions,
etc.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 85

Didactic Presentations

The NEURON Simulation Environment

SenselLab (senselab.med.yale.edu)

“ »
1_ I Moa bl B =
: \ NeuronDB |
1i“ o Back] Userpublic
i
- Overview. Data/Search lus Connectivit lus Classical Models. i
v | | | P Y . | | [i& B
Los w0 - .
L_ Hippocampus CA1 pyramidal cell
VoAt Are
s Neuron Type: principal
Organism: Vertebrates
8 o ElectroPhysiology: NeuroElectro.org
Lol spdiy Pharmacology: IUPHAR
- Reconstructions: NeuroMorpho.Org
Iy Genes: Allen Brain Atlas - Links
= l Genes: Human Brain Transcriptome
H — NeuroLex:
{- -y Connectivity: Live connectivity specified by colored boxes. Dark yellow: distant ity. Light yellow: auto
. et
L3, 18 Areal

2
- ¥
°
&
o
gl | |

Input Receptors

Distal apical dendrite CA1 oriens alveus it

Axon terminal.Gaba

lpg
Lh
Widdle apical dendrite CA1 oriens alveu: Axon terminal INat
= CA1 oriens alveu Axon terminal I
EH CA3 pyramidal cell. Axon terminal. Glutamate NMDA | [Potassium

Perforant pathway entorhinal pyramidal neuron terminals () Glutamat

Intrinsic Currents Output Transmitte
INat
LT low threshold

L high threshold

@ Senselab is a suite of 10 interconnected databases (listed at left).
@ ModelDB and NeuronDB (at right) are the most useful for modeling.

@ NeuronDB shows what channels are present and the inputs and outputs by
cell region (e.g. distal apical dendrite vs proximal apical dendrite).

Stay up to date

Twitter

Many groups announce new developments on Twitter, including:
Senselab (including ModelDB): @SenselLabProject

Open Source Brain: @OSBTeam

NeuroMorpho.Org: ©@NeuroMorphoOrg

ICGenealogy Project: @ICGenealogy
Int. Neuroinformatics Coordinating Facility (INCF): @INCForg

Page 86 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 87

Didactic Presentations The NEURON Simulation Environment

Page 88 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Modeling intracellular
neuronal dynamics

Robert A McDougal

“Reaction—diffusion systems are mathematical models which
explain how the concentration of one or more substances
distributed in space changes under the influence of two
processes: local chemical reactions in which the substances are
transformed into each other, and diffusion which causes the
substances to spread out over a surface in space.”

httos://en org/wiki/Reaction%E. fusion svstem

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 89

Didactic Presentations The NEURON Simulation Environment

Mass-Action kinetics

The model

* A reaction’s product is formed at a rate proportional to
the concentration of the reactants.

Exam ple Conservation of mass.

* Consider the reaction
Matter is neither created

Na + Cl ﬁ NaCl nor destroyed by
e Then: reactions.

In our equations, this

[Na]’ = —k[Na][Cl] means:

[Cl]" = —k[Na][C]]

[NaCl]’ = k[Na][cl] [Na] + [NaCl] = constant
[CI] + [NaCl] = constant
Exercise

Use the law of mass-action to write a system of
equations describing the formation of calcium
chloride:

Ca+2Cl CaCl,

FNT

Answer:

[Ca]’ = —k¢[Ca][CI]* + kj[CaCl,]
[C1]" = —2ks[Cal[CI]? + 2k [CaCl,]
[CaCl,]" = k¢[Ca][Cl]? — kp[CaCl,]

Page 90 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Enzyme kinetics

Didactic Presentations

It is generally not the case that a substrate transforms directly into a product:

S->P

Instead, an enzyme is often involved:

k
E+S 2 cat

ES — E+P

Michaelis-Menten

If we can assume either:

https://commons.wikimedia.org/wiki/File:Michaelis_Menten_S_P_E_ES.svg

* the substrate (S) and the complex (ES) are in instantaneous

equilibrium, or

* the concentration of the complex (ES) does not change on the

time-scale of product formation

Then the rate of the enzymatic reaction reduces to:

Vmax [S]

Ky + [S]

K, is called the Michaelis constant. It is the
concentration at which the reaction proceeds at half its

maximum rate.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 91

Didactic Presentations The NEURON Simulation Environment

Michaelis-Menten vs Mass-Action

. S—>P
Mass-Action

Michaelis-Menten e
" o Both curves on the left have the

same rate of reaction when the
substrate concentration is low, but
the Michaelis-Menten rate levels
off (due to limited enzyme
availability) as concentrations
increase.

Reaction rate

na nn nx " .X

Concentration of substrate Y= Y105

Hill equation: cooperative binding

Vinax [ST? If n > 1, positive cooperativity.
[k,]+ [S]" If n < 1, negative cooperativity.
12 —-n =4
-—=—"n=2
3 == |n=1
; - ——n=0.5
o6 _-___-—"-
[S]n ;;;.;;;.._"__
1"+ [S]"

Page 92 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Neurons have spatial extent

Effects of non-point-ness:

* lon and protein
concentrations vary with
space.

* Cellular mechanisms (ER,
ion channels, etc) vary
with space.

Concentrations at different
locations affect each other:
P : * Transport
r A * Diffusion

Cajal 1909 as reproduced in Rall 1962.

Fick’s First Law
and the diffusion equation

Fick’s First Law:

* Diffusive flux is proportional to the concentration
gradient.
J=-DVgp
* Here D is called the diffusion coefficient.

Fick’s Second Law (the diffusion equation):

d
a—sz-(DV(p)zDqu)

where the last equality only holds if D is constant.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 93

Didactic Presentations The NEURON Simulation Environment

Where does diffusion occur?

e Cytosol
* But not full cross section because of organelles

* Organelles (e.g. ER)

* Extracellular space
* Tortuosity
* Anisotropy
* Volume fraction

Practical limits of pure diffusion

The expected time E[t] for a molecule with diffusion
constant D to diffuse a distance x is:

So in particular, if
D =1 um?/ms and
x =100 pm,

Then
E[t] = 2% — 5000 ms.

2

Page 94 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Diffusion with regenerative dynamics
can quickly spread signals
A

Adapted from Neymotin*, McDougal* et al 2015.

(W) BIUEEID

M stim
(100 Hz}

Fitzpatrick, J. S., Hagenston, A. M., Hertle, D. N., Gipson, K. E., Bertetto-D'Angelo, L., & Yeckel, M. F. (2009). Inositol-1, 4, 5-trisphosphate
ecepti I Ca2+waves in pyramidal neuron dendrites propagate through hot spots and cold spots. The Journal of physiology, 587(7), 1439-1459.

Why use NEURON'’s rxd module?

@ In 2 lines: declare a domain, then declare a molecule, allowing it to
diffuse and respond to flux from ion channels.
all = rxd.Region(h.allsec(), nrn_region="i")
ca = rxd.Species(all, name='ca', d=1, charge=2)

@ Reduces the risk for errors from typos or misunderstandings.

Allows arbitrary domains

NEURON traditionally only identified concentrations just inside and just
outside the plasma membrane. The rxd module allows you to declare
your own regions of interest (e.g. ER, mitochondria, etc).

Or use crxd for faster simulation.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 95

Didactic Presentations The NEURON Simulation Environment

rxd module overview

@ Where do the dynamics occur?

o Cytosol
e Endoplasmic Reticulum

o Mitochondria Interface design principle
o Extracellular Space

Reaction-diffusion model
specification is independent of:

@ Who are the actors?

e lons o .

o Proteins @ Deterministic vs stochastic.
@ What are the reactions? @ 1D or 3D.

o Buffering

e Degradation
e Phosphorylation

Declare a region: rxd.Region

geometry:

Basic Usage

(seclist) |
Identify with a standard region | Q
(' S

rxd.inside

cyt = rxd.Region(seclist

seclist may be any iterable of sections; e.g. a SectionList or a Python list

rxd.membrane

Identify with a standard region

cyt = rxd.Region(seclist, nrn_region="i")

nrn_region may be i or o, corresponding to the locations of e.g. nai vs nao.

\,

rxd.FractionalVolume(
volume_fraction=f,,
surface_fraction=f,)

Specify the cross-sectional shape

N

cyt = rxd.Region(seclist, geometry=rxd.Shell(0.5, 1))

The default geometry is rxd.inside.
The geometry and nrn_region arguments may both be specified.

xd.Shell(ry/R, r/R)

Adapted from:
McDougal et al 2013.

Page 96 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

rxd.Region tips

Specify nrn_region if concentrations interact with NMODL

If NMODL mechanisms (ion channels, point processes, etc) depend on or affect
the concentration of a species living in a given region, that region must declare a
nrn_region (typically 'i').

To declare a region that exists on all sections

r = rxd.Region(h.allsec())

Use list comprehensions to select sections

r = rxd.Region([sec for sec in h.allsec() if 'apical' in sec.name()])

Declare ions & proteins: rxd.Species

Basic usage
protein = rxd.Species(region, d=16)

d is the diffusion constant in umz/ms. region is an rxd.Region or an iterable of rxd.Region objects.

Initial conditions

protein = rxd.Species(region, initial=value)

value is in mM. It may be a constant or a function of the node.

Connecting with HOC

ca = rxd.Species(region, name='ca', charge=2)

If the nrn_region of region is "i", the concentrations of this species will be stored in cai, and its concentrations will be affected by ica.

protein.initial can be read and set, to allow exploration of the role of initial conditions

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 97

Didactic Presentations The NEURON Simulation Environment

Tip:
Variable step integration

NEURON'’s variable step solver has a default absolute tolerance of 0.001.

Since NEURON measures concentration in mM and some cell biology
concentrations (e.g. calcium) are in pM, this tolerance may be too high.
Compensate by using an atolscale in the constructor, e.g.

ca = rxd.Species(cyt, atolscale=le-6)

Example:

Handling non-uniform initialization

Initial value as a function of distance from a point:

def my initial (node):
compute the distance
distance = h.distance(soma (0.5), node.segment)
return a certain function of the distance
return 2 * h.tanh(distance / 1000.)

cyt rxd.Region(h.allsec(), name='cyt', nrn region='i')

rxd.Species (cyt, name='ip3', charge=2
initial=my initial)

ip3

Page 98 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Example:

Handling non-uniform initialization

Initial value as a function of spatial position:

def my initial (node):
return a certalin function of the x-coordinate
return 1 + h.tanh(node.x3d / 100.)

cyt = rxd.Region(h.allsec(), name='cyt', nrn region='i')

ip3 = rxd.Species(cyt, name='ip3', charge=2
initial=my initial)

Tip:
rxd.Parameter

* Used to represent things that vary spatially or across
different simulations:

* o = rxd.Parameter (cyt, name='oa', value=0.3)

» Used to limit reactions to specific segments:

* soma only = rxd.Parameter (cyt,
name='paramA',
value=lambda nd: 1 if nd.segment in soma else 0)

* Used as constant terms in Reactions:

* k = rxd.Species([cyt, mem], name='k', d=1, charge=1, initial=54.4)
¢ kecs = rxd.Parameter (ecs, name='k', charge=1l, value=2.5)
e ki, ko = k[cyt], kecs[ecs]

* k current = rxd.MultiCompartmentReaction(ki, ko, gk*(rxd.v - ek),
mass_action=False, membrane=mem,membrane flux=True)

bit.ly/2wyG91y

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 99

Didactic Presentations The NEURON Simulation Environment

Tip:
rxd.Parameter

* Use short-hand to avoid repeatedly writing
rxd.Parameter boilerplate; e.g.

def declare parameters(r, **kwargs):
"'"'enables clean declaration of parameters in top namespace’’’

for key, value in kwargs.items() :
globals () [key] = rxd.Parameter (r, name=key, initial=value)

* Can then, e.g.:

from neuron.units import nM, hour
declare parameters (
vsP=1.1 * nM / hour,
vmP=1.0 * nM / hour,
KmP=0. * nM,
KIP=1.0 * nM,
ksP=0.9 / hour)

0 oN O

Specifying dynamics: rxd.Reaction

Mass-action kinetics

ca + buffer % cabuffer
buffering = rxd.Reaction(ca + buffer, cabuffer, kf, kb)

kf is the forward reaction rate, kb is the backward reaction rate. kb may be omitted if the reaction is unidirectional.
In a mass-action reaction, the reaction rate is proportional to the product of the concentrations of the reactants.

Repeated reactants

2H + O % H20
water_reaction = rxd.Reaction(2 * H 4+ O, H20, kf, kb)

Arbitrary reaction formula, e.g. Hill dynamics

a+b—c
hill_reaction = rxd.Reaction(a + b, c,a "2 / (a ~ 2 + k " 2), mass_action=False)

Hill dynamics are often used to model cooperative reactions.

Page 100 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

rxd.Rate and
rxd.MultiCompartmentReaction

Use rxd.Rate to specify an explicit contribution to the rate of change of some
concentration or state variable.

ip3degradation = rxd.Rate(ip3, -k * ip3)

rxd.MultiCompartmentReaction

Use rxd.MultiCompartmentReaction when the dynamics span multiple regions;
e.g. a pump or channel.

ip3r = rxd.MultiCompartmentReaction(caler], ca[cyt], kf, kb,
membrane=cyt_er_membrane)

The rate of these dynamics is proportional to the membrane area.

Manipulating nodes

Getting a list of nodes

@ nodelist = protein.nodes

Filtering a list of nodes
@ nodelist2 = nodelist(region)
@ nodelist2 = nodelist(0.5)
@ nodelist2 = nodelist(section)(region)(0.5)

Other operations
@ nodelist.concentration = value
@ values = nodelist.concentration
e surface_areas = nodelist.surface_area

@ volumes = nodelist.volume

@ node = nodelist[0]

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 101

Didactic Presentations The NEURON Simulation Environment

Concentration pointers

To get a pointer to a concentration, use node. ref concentration:

Recording traces

v = h.Vector()
v.record(ca.nodes[0]._ref_concentration)

Plotting

g = h.Graph()
g.addvar('caler][dend](0.5)', ca.nodes(er)(dend)(0.5)[0]._ref_concentration)
h.graphList[0].append(g)

Remember, you can use e.g. dir (ca.nodes) to find out what methods exist.

If there is only one node, you can omit the [0] before the . ref concentration.

Example:

Calcium buffering™®

Consider calcium buffering with a degradable buffer:

2 Ca + Buf < CaBuf, Buf — (degraded) _ Ezf

0.10 — cabuf |

from neuron import h, rxd

where
soma = h.Section(name=’soma’)
cyt = rxd.Region([somal, nrn_region=’1i’)

Concentration (uM)

who 0.04
ca = rxd.Species(cyt, name=’ca’, charge=2, initial=le-4)
buf = rxd.Species(cyt, name=’buf’, initial=1e-4)

0.02}
cabuf = rxd.Species(cyt, name=’cabuf’, initial=0)

what 0.00
0 100 200 300 400 500
buffering = rxd.Reaction(2 * ca + buf, cabuf, 1e6, le-2) t (ms)

degradation = rxd.Rate(buf, -1e-3 * buf)

Page 102 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Example:

Didactic Presentations

Leloup, Gonze, Goldbeter 1999

— WP A
o /)
-1 J |
25 f |
| |
|
| |
" \
20 / \
- f \ \
-] \ \
g1s / ||
: /] — |
“10 J | /
/ | /
r"' '
. |
s | .
/ \ ""'
/ \
0cC -
0 10 2 X

t(hours)

See: https://neuron.yale.edu/neuron/docs/example-circadian-rhythm

Example:

CICR
) .
\“A

Cytosol

leak | leak

A
@

dCaz, Jipar — Jsgrca + fieaks
yt 2 IP3R SERCA leakER
ar e ACag + Fou S Cionies
a2
Capy _ 2+ _ Jivar ~ Jserca F Jieaker
=dcp: - ACa .
ot Caliy ER fir
1P,
o =, AIP;

Neymotin*, McDougal*, et al. (2015)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

SERCA
-

ER

_5 3 3 3 2+ 24y g
Jiwsr = Pre,r - M R - e g - e g - (Cagg — Cagl)/E

_ 242
J _ Pierca * Cagy
SERCA = — 2 ,
2 2+ o)
(ksvrm + Cacyl)-8
—5 2+ aavic)
Jieaker = Preaker * (Cagg — Cacyt)/“‘

Page 103

Didactic Presentations The NEURON Simulation Environment

Example:

CICR

Volta.ge (mV) ‘

Not primed
—20} Primed =
€
=i
=
- - C
40 s
B
3
-60f L2
A
-80 56 8 10
Ca mM
0.05 ER ()
0.04 —~
£
0.03f 2
C
o
0.02f =
‘@
(o]
0.01} a
0.00 4 6 8 10
Time (s) Time (s)

Neymotin*, McDougal*, et al. (2015). Figure 11.

Extracellular diffusion

* Uses the same simple Python interface

~=— ecs =rxd.Extracellular(xlo=-30, ylo=-30, zlo=-30,

> xhi=30, yhi=30, zhi=30,

Smy dx=20, tortuosity=1.6,
volume_fraction=0.2)

astrocytic_buffering = rxd.Reaction(A + k, AK, kf, kb) @ - @
o ®
* Rectangular cuboid grid
* Supports
* anisotropy & heterogeneous tissue characteristics

k = rxd.Species(ecs, name='k', d=2.62, charge=1,
initial=lambda nd: 40 if nd.x3d**2 + nd.y3d"*2 + nd.z3d"*2 < 100"*2 else 3.5,
ecs_boundary_conditions=3.5

neuron.yale.edu/neuron/docs/extracellular-diffusion

Page 104 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Extracellular diffusion

* Accessing and recording concentrations

k[ecs].states3d # numpy array of the extracellular states
k_vec = h.Vector().record(k[ecs].node_by_location(0,0,0)._ref_value)

* Inhomogeneous diffusion characteristics

Lx, Ly, Lz = 1000, 1000, 1000
alpha0, alphat = 0.07,0.2
tort0, tort1 = 1.8, 1.6

ro =100

def alpha(x, y, 2) :
return alpha0 if X**2 + y*"2 + 2""2 < r0""2
else min(alpha1, alpha0 +(alpha1-alpha0)
“((x**2+y**2+2""2)**0.5-r0)/(Lx/2))

def tort(x, y, 2) :
return tort0 if X**2 + y**2 + 2"*2 < r0""2
else max(tort1, tort0 - (tort0-tort1)
((X™"2+y*2+2""2)"*0.5-r0)/(Lx/2))

ecs = rxd.Extracellular(-Lx/2.0, -Ly/2.0,
-Lz/2.0, Lx/2.0, Ly/2.0, Lz/2.0, dx=10,
volume_fraction=alpha, tortuosity=tort)

Extracellular diffusion

New region type:

ecs = rxd.Extracellular (xlo, ylo, zlo, xhi, yhi, zhi,
dx=dx, tortuosity=1, volume_ fraction=1)

Setting/getting extracellular concentrations:

calecs].states3d[5:15, 5:15, :] =1

pyplot.imshow(ca[ecs].states3d[:, :, 0],
interpolation='nearest', vmin=0, vmax=1,
extent=calecs].extent('xy'), origin='lower')

‘We use a finite-volume method, the Douglas-Gunn
L= w0 - (92 40,0 < 02) o0 Alternating Direction Implicit algorithm is
B unconditionally stable.

Each time-step is divided into an x-, y- and z-
direction and requires solving diagonally dominant,

LRy tridiagonal systems of equations. This is solved
with the Thomas algorithm, so the runtime
2 scales linearly with the number of voxels.
e)
’ ' ; ‘ 1- oty = Evtelt) ‘We currently support zero-flux Neumann boundary
d conditions which conserves the total concentration.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 105

Didactic Presentations The NEURON Simulation Environment

Specifying 3D Simulations

Just add one line of code?:
rxd.set_solve_type(dimension=3)
all = rxd.Region(h.allsec())
ca = rxd.Species(all, d=1)
ca.initial = lambda node: 1 if node.x3d < 50 else 0

| \

Plotting

Get the concentration values expressed on a regular 3D grid via
nodelist.value_to_grid()

values = ca.nodes.value_to_grid()
Pass the result to a 3d volume plotter, such as Mayavi's VolumeSlicer:

graph = VolumeSlicer(data=ca.nodes.value_to_grid())
graph.configure_traits()

N,

2rxd.set _solve_ type can optionally take a list of sections as its first argument; in that
case only the specified sections will be simulated in three dimensions.

Threading

* Extracellular and 3D simulations may be threaded
using, e.g.

rxd.nthread(4) # for four threads

30 e (el e atrguelluler lrigatl

* Either electrophysiology or AR T By ALmbar of threads
reaction-diffusion can be T -
threaded, but not both. na us

i 0.2
1 2 4 FE I& 2 34

Page 106 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Douglas-Gunn ADI
"
—.,:: 1=l .f')-,; R T I
; o
i
' - 3 “ “
a |
P LY ' v
1 |
33{3 T
% J
3 2 |
< |2
Fow
-:‘
T
e <]
-
~ «w

NEURON 7.7 uses threaded DG-ADI; previous versions used bicgstab.

Wave curvature and delays at soma

abdut’
65 ms -
entry tim

e

Wave

ropagation
contours of wave

front at 5 ms
intervals

u, = D V2u — &u(l — u)(a — w) For about 750k voxels, a pre-alpha branch of
NEURON 7.7 simulated 300 ms of this
(dt=0.025ms) with four threads in 258 s.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 107

Didactic Presentations The NEURON Simulation Environment

Full 3D Simulation

frea wursy dsgs—t r, m2

- ‘ - -)

- 0 - -_—

R O L Wi .
ce8.. - 3

o~ Jom e 8

- vy
el . 3

we r - . w e wil
Hre.. - 15

Avs im0)

OTell MILOOH »m work Db dec%izw %2 % 21 0
1

pwls e ety
arere
- . . W ' i
nre
o & =g Soecdzalr, 2e).3, dmge'ie sherpoel, ndtialelerdde rodc:] AF rodc.aczescend crd mece. ety > 0.2 clac 9!

alezwale_rance ro3.6uTelce, «co * 11 - ca) v 0.5 - 2a))

QIS LIRS FHER

alz.ligure(figeize (25,000

" .

oL An T

def plot_contours(species): -
g = species.nodes.value_to_grid()
gprime = np.nan_to_num(g)
plt.subplot(l, 1, 1)
collapsed = np.max(gprime, axis=1)
Xs, ys = np.meshgrid(range(collapsed.shape[1]), range(collapsed.shape[8]))
plt.contour(xs, ys, collapsed, 1, colors='k', linewidths=1)
plt.axis('equal')
plt.axis('off"')

t=0ms

@IIIIIIII

t=64 ms
=66 ms

Page 108 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

GUI-based specification

Reaction-diffusion dynamics can also be specified using the GUI. This option
appears only when rxd is supported in your install (Python and scipy must be
available).

NEURON Main Menu

GUI-based specification

« Species ~ Reactions ~ Morphology « Instantiate

Electrophgstologd reglon; (Inside (D)utside [Neither

Select Geometry:

Inside

Hembr-ane

Fractional Yolume
Shell

Constant 2D AreasLength
Constant 3D Yol/Length

Fractional Yolume is used to represent regions that are intermixed
in a nontrivial way,

It is likely that in most cases the volume fraction and the
neighbor fraction will both represent the cross-sectional area
fraction, and so therefore should be equal. The surface fraction
is the fraction of the surface area that belongs to this region,
For example, if this is used to represent the ER, then the
surface fraction should be zero,

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 109

Didactic Presentations The NEURON Simulation Environment

GUI-based specification

+ Regions ~ Species « Reactions ~ Maorphology « Instantiate
Lﬂame: |

yt

[l N e Ii'(l)nside (D)utside Neither
Select Geometry:

Inside 0.62
Hembrane
Fractional Yolume 1

Shell 0.52
Constant 2D Area/Length
Constant 3D Yol/Length

GUI-based specification

Ed: es and Select Regions for Each Species

ca

Nonselected Regions Selected Regions

buf

Nonselected Regions Selected Regions
) :

cabuf

Nonselected Regions Selected Regions

Page 110 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

GUI-based specification

v Regions v Species Reactions + Morphology + Instantiate

Edit and Enable Reactions
(3 buffering

s = Horphology v Instantiate

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 111

Didactic Presentations

The NEURON Simulation Environment

GUI-based specification

NEURON Main Menu

 Close
—————

Hide
— -

+ Regions

+ Species

« Reactions « Morphalogy + Instantiate

instantiating,

You may want to save your work (File -> Save Session) before

after the RxD model has been instantiated,

as there is currently no way to make changes

When you are ready, click:

Experimental GUI specification

LA REE FS3) U]

o ptwgor,

- o, . |

adaselinlin 1>

Page 112

https://github.com/ramcdougal/rxdbuilder

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Experimental GUI specification

S oipa T
: E ' DL S
T /.-' = 7= [R | ELR T e e (e
“~ #
- / \'1—"'/ kb ©
s .
/ { vines nct an
4 J .
ipp2e Nkl serca BSOS ST SO
= . =| = al
. Ixstinarics sochiomatey
\ cal
Y -
M ™ S i il
L CTEM
| — |
.\ -).
~ .
or volume lrsclon 3.8 x)
uyl saliyess fracsion 1 Pry = a'r.-l.:i:_:u‘

https://github.com/ramcdougal/rxdbuilder

For more information

Journal articles on reaction-diffusion in NEURON

* McDougal RA, Hines ML, Lytton WW. (2013). Reaction-diffusion in the NEURON
simulator. Frontiers in Neuroinformatics, 7.

* McDougal RA, Hines ML, Lytton WW. (2013). Water-tight membranes from
neuronal morphology files. Journal of Neuroscience Methods, 220(2), 167-178.

* Newton AJH, McDougal RA, Hines ML, Lytton WW. (2018). Using NEURON for
reaction-diffusion modeling of extracellular dynamics. Frontiers in
Neuroinformatics, 12, 41.

Online resources

¢ NEURON forum

* Programmer’s reference

* NEURON reaction-diffusion tutorials:
https://neuron.yale.edu/neuron/docs/reaction-diffusion

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 113

Didactic Presentations The NEURON Simulation Environment

Page 114 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Spatially inhomogeneous
parameters

Rules
* None (arbitrary values)
* Constant over sets of sections
use SectionLists (CellBuilder Subsets)
* A function of position

Example: model with hh
In apical dendrites

bas ap ap[1]

axon s0ma

ap(Z]
Suppose gnabar_hh in the apical tree

decreases linearly with distance from the soma.
Details: 100% at tree origin, 0% at most distant termination.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 115

Didactic Presentations The NEURON Simulation Environment

A
This example:
gnabar_hh = 0.12 * (1 - p)wherep = Lgy/Lyax

(normalized path distance from location x
to origin O of apical tree)

The general problem:

param=f(p) where f can be any function
and p is a "distance metric" such as:
* path length from a reference point
* radial distance from a reference point
* distance from a plane ("3D projection onto a line")

X

—
The general problem:
param=f(p) where f can be any function
and p is a "distance metric" such as:
* path length from a reference point

* radial distance from a reference point
 distance from a plane ("3D projection onto a line")

Equivalent idioms:

forsec subset for (x,0) \
{rangevar_suffix(x)=f(p(x))} // hoc

for sec in subset:

for seg in sec:
sec(seg.x).rangevar = f(p(seg.x)) # Python

Page 116 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Conceptualize the task
1. Specify the

subset s

distance metric p

parameter that depends on
distance

function f that governs the
relationship
between the parameter and p

2. Verify the implementation

How? hoc or Python or GUI (CellBuilder)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 117

Didactic Presentations The NEURON Simulation Environment

Page 118 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Two kinds of parallel problems
A simulation run takes about a second.
Want to do 1000’s of them,
varying a dozen or so parameters.
A simulation of a large network takes hours.

Want to spread the problem over several machines,
each machine handling a subset of the neurons in the n

Serial Parallel
s=0 s=0
for i in range(10): for i in range(10):
s +=1(i) pc.submit(f, i)

while pc.working()
S += pc.retval

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 119

Didactic Presentations

The NEURON Simulation Environment

Goals
Keep all the machines as busy as possible.

If there is only one machine the parallel prog
should run as fast as the serial program.

Things asked for earlier tend to get done eat

Assumptions
Workstation cluster — 1, 3, 15, 100 machines
Wide variety of machine speeds.

Sending a byte is much slower than
executing a hoc or Python statement.

Domain

Very coarse grain parallelizatic

|| loop

f ||loop f || Toop

AN

g 9 ¢ g 9

NEURON'’s style

A bulletin board
... on top of MPI.

Page 120

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal

, all rights reserved

The NEURON Simulation Environment Didactic Presentations

L aunching a parallel program
pc = h.ParallelContext()

setup which is exactly

the same on every machine
i.e. declaration of all

functions, procedures,

setup of neurons

pc.runworker()
the master scatters tasks
onto the bulletin board
and gathers results

pc.done()

example.py

from neuron import h
pc = h.ParallelContext()

def f(j):
s=0
for i in range(100000):
s+=j
return s

pc.runworker()

runtime = h.startsw()
s=0

for i in range(10):
pc.submit(f, i)

while (pc.working()):
S += pc.pyret()

print"sum=",s

print "runtime ", h.startsw() — runtime
pc.done()

h.quit()

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 121

Didactic Presentations The NEURON Simulation Environment

$ mpiexec —n 1 nrniv —mpi example.hoc
numprocs=1

NEURON -- VERSION 7.5 (1512:e0bd0137f04c) 2017-01-30

sum = 4500000
runtime 0.099999...

$ mpiexec —n 4 nrniv —mpi example.hoc
numprocs=4

NEURON -- VERSION 7.5 (1512:e0bd0137f04c) 2017-01-30

sum = 4500000
runtime 0.039999...

Context and Communication

NEURON

g(i)

neuron context

g context

()

post Bulletin board
take

look Bulletin board
look_take

context(" stmt") : stmt executed on every worker

Page 122 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Context and Communication
With Python

def f(argl, arg2):

return any_pickleable _object

bé.submit(f, (argl, arg?))

while pc.working():
r = pc.pyret()

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 123

Didactic Presentations The NEURON Simulation Environment

Page 124 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Numerical Methods

Accuracy, stability, speed

Robert A. McDougal

Yale School of Medicine

9 August 2018

Hodgkin and Huxley: squid giant axon experiments

L tavack

ghant axzr

(i — g
=
I
| _.-"'H-
o 5 L]
" Adapted from Pearson Education 2009.

Top: Alan Lloyd Hodgkin;
Bottom: Andrew Fielding
Huxley. Images from Wikipedia.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 125

Didactic Presentations The NEURON Simulation Environment

Hodgkin and Huxley equations

dv

C=- (gnam*h(V — Ena) + gxn*(V — Ex) + g(V — Ey))
dm
I V)L m) (V)
% — an(V)(1— h) — Ba(V)h
dn

o = an(V)(L =) = Ba(V)n

Model
T 3 r3

)
110

3 T
1

0EmY Vo, Experiment

7
3
7

,
ks n
(!
5 g 3 O

%

o

H

&
—o0

P—

e
osBEsEEI8gE
PRI

Top: Alan Lloyd Hodgkin; l
Insid

Bottom: Andrew Fielding
Huxley. Images from Wikipedia.

<
-- -
1
Yo
[+
z
l¢
CY Iy
™)
BEa5838383

e =1

5 g
Adapted from Hodgkin and Huxley 1952.

What does it mean?

Electronics 101

Page 126 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Current

Current is the movement of charge. In electronics, current is carried by the
movement of electrons. In neurons, current flows across the membrane by the
movement of ions. These ions can be positively or negatively charged.

CACACENNG)

Resistors = Conductors

A resistor is a material that impedes current flow. This includes essentially all
materials. For those materials obeying Ohm’s law,

v=IR

where v is the voltage drop across the resistor, / is the current, and R is the
resistance (this may be constant or a function of time).

This may alternatively be written as
| =gV

where g = 1/R is the conductance.

lon channels allow current to pass in the form of moving ions. They are therefore
resistors. The resistance varies over time.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 127

Didactic Presentations The NEURON Simulation Environment

A capacitor accumulates charge according to
CV=Q

where Q is the charge, V is the potential, and C is the capacitance.

The capacitive current is the rate at which charge is being stored on the current,
dQ/dt. Thus differentiating both sides of the above, we find

v dQ

Lo
dt dt

Cell membrane

Charged ions accumulate along a neuron's membrane. It is therefore a capacitor.

Kirchhoff's Current Law

The algebraic sum of currents in a network of conductors meeting at a point is
zero.

Wording from https://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws

Page 128 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Putting it together: the electronics of a neuron

Consider a simplified cell with
three currents:

I

By Kirchoff,

O=ih+hb+i3

dv
=—/+C— %4
+ ar + g

Rearranging terms, we conclude:

dv
c v
g &'

The Hodgkin-Huxley equations account for a pull on ions due to the balance of chemical and electrical gradients. This approximately acts as a battery
with potential E associated with each resistor and leads to terms of the form g(V - E).

Solving a differential equation

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 129

Didactic Presentations

Consider the differential equation

dv

We can solve this for V/(t) by
separation of variables:

v dt
I—gV C

/ dv. [dt
| —gV C

—1 t
nll—gV|=—
" n|l —gV| cta

| — gV = e /€

Therefore,

V = (/ — cze_gt/c>)

0Q | =

The NEURON Simulation Environment

We can then solve for ¢, by plugging
in V(O) = Vo:

1
Vo = — (] — Co
g()
e}
o=1-gW
and thus

1
V== (/ (- gvo)e—gf/c) .
g

Note: This is a lot of work and is only
possible because the equation is
simple. This type of equation appears
in leaky integrate and fire and is the
basis of the cnexp solver.

To solve general differential equations,
we must use numerical techniques.

Here we're assuming g is a constant. This is not true for voltage gated ion channels.

In the Explicit Euler method, we
approximate

dy Ay
dt ~ At

for some small time step At and
estimate the function at a series of
time points. Here Ay, = yp11 — yn
and At, = thi1 — t,.

Then starting from some initial point

d

(th_yO). we approximate ot = (t’y)

as 2—{: = f(tn, yn) and thus
Ay, = Aty f(th, yn)

and therefore

Ynt1 =Yn+ Atnf(tnayn)'

Page 130

1.00

0.80

0.60

0.40

0.20

0.00 Ay - o
3

0 (AN 2

Explicit Euler starts at a point, moves
in the direction of the tangent line
(slope dy/dt) for a time At, then
repeats.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Explicit Euler is numerically unstable

If the time step in Explicit Euler is too large, the solution will be unstable:

2 _
small dt

large dt (5555

120

The Implicit Euler method is almost
the same as the Explicit Euler method
except instead of evaluating at

f(tn, yn), we evaluate at f(tp41, Ynt1)-

That is,

Yn+1 =Yn + Atnf(tn-l-lv}/n-i-l)'

Note that y,.1 is on both sides, and
thus we have an algebraic equation
that must be solved to find y,41.

1.00

0.80

0.60

0.40

0.20

0.00 . . ‘

Implicit Euler finds a new point such
that if we moved in the direction of
the tangent line (slope dy/dt)
backward in time by At, we would get
where we started.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 131

Didactic Presentations The NEURON Simulation Environment

Implicit Euler is numerically stable

2 1/20
small dt

large dt (0.20

1.5

0.5

ol | | | | |
0 0.2 0.4 0.6 0.8 1

As Implicit Euler is numerically stable, it is NEURON's default integration method.

Accuracy of Implicit Euler

Note that the solutions found with a small dt and a

large dt are different, even after the initial rapid e gt (0.20 %N%
change. -

One can prove that halving dt will approximately
halve the difference between the computed value
and the true value.

Thus Implicit Euler is a first order method.

Error convergence estimates are true in the limit as dt — 0.

Page 132 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Crank-Nicolson is stable but can oscillate

2

1.5

0.5

0 0.2 0.4 0.6 0.8 1

NEURON also supports the second-order Crank-Nicolson method
(h.secondorder=2). The solution is stable and converges faster than Implicit or
Explicit Euler, but it can exhibit oscillations.

If h.secondorder=2, then membrane potentials are second order correct at time
t, currents at t — dt/2, and channel conductances at t + dt/2. To plot these
correctly in NEURON, use a voltage axis, current axis, or state axis, respectively.

x=—14xy, y=—xy

Single iteration y Staggered time step

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 133

Didactic Presentations The NEURON Simulation Environment

Variable time steps

So far, we have considered numerical error as a function of the time step dt. We
can instead choose an error tolerance and use that to pick a new dt at each time
step.

NEURON provides the CVode object for enabling variable step simulation.

2 2 o—

h.CVode () .atol (1le-3) h.CVode () .atol (1le-1)

Incorporating space

Page 134 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

a
/ i = Z i
dv; . Vk — Vj
de—; + lj = Z kr.k
P J
- Section -
Node
o o o o
Segment
v(0) v(1.5/nseg) v(1)
-4 Membrane

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 135

Didactic Presentations The NEURON Simulation Environment

Improving accuracy by increasing nseg

Improve accuracy by reducing the size of spatial compartments. In NEURON, do
this by increasing nseg, the number of segments:

nseg =1 ¢ ® ¢
nseg =2 ¢ ° ‘ ° ¢
me=ig o | e | e e

for sec in h.allsec():
sec.nseqg *= 3

Note that you must multiply nseg by an odd number to preserve the location of
the computed values, which is essential to testing convergence.

Trees can be solved stably in O(n)

Only unstable methods can solve arbitrary shapes in O(n)

To solve AAy = b where y and b 4
have n entries (e.g. if we want to 8 0
solve for 4 variables at n/4 points) :
takes time proportional to:

@ n3 via Gaussian Elimination

@ n'°827 via Strassen (1969)

@ n if A corresponds to a
“tree-matrix” (e.g. a neuron)
discretized in a certain way

(right).

McDougal et al 2013

Page 136 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 137

Didactic Presentations The NEURON Simulation Environment

Page 138 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Networks:
spike-triggered synaptic transmission,
events, and artificial spiking cells

1. Define the types of cells
2. Create each cell in the network
3. Connect the cells

Communication between cells

Gap junctions

Synaptic transmission
graded
spike-triggered

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 139

Didactic Presentations The NEURON Simulation Environment

Graded synaptic transmission

Physical system:

A presynaptic variable governs
continuous transmitter release

Transmitter modulates
a postsynaptic property
Vv

pre

_tl gSynpost = f(vpre)

gsyn post

Problem: how does postsynaptic cell know Vpre?

Graded synaptic transmission continued

Answer: use POINTER to link postsynaptic variable
to the presynaptic variable

NMODL specification of synaptic mechanism:

NEURON {
POINT_PROCESS Syn
POINTER v_pre

}
hoc usage
objref syn
dend syn = new Syn(0.5)
setpointer syn.v_pre, precell.axon.v(1)

Page 140 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Spike-triggered synaptic transmission

Physical system: © /
Presynaptic neuron with axon
that projects to synapse on target cell

Conceptual model:
Spike in presynaptic terminal
triggers transmitter release;
presynaptic details unimportant
Postsynaptic effect described by
DE or kinetic scheme that is perturbed by
occurrence of a presynaptic spike

Spike-triggered transmission:
computational implementation

Basic idea
Complete
representation
of propagation Spike Synaptic g Postsynaptic
from spike init. detector latency S/ region
zone through
axon to terminal

More efficient: "virtual spike propagation”

Delay
Spike . conduction :
L Spike Postsynaptic
initiation latency ng ;
zone detector . region
synaptic
latency

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 141

Didactic Presentations The NEURON Simulation Environment

The NetCon class

Python usage

nc = h.NetCon(source, target)
nc = h.NetCon(source_ref_v, target
[, threshold, delay, weight,
sec = section])
Defaults

nc.threshold = 10
nc.delay = 1 # must be >= 0
nc.weight[0] = 0 # weight is an array

NMODL specification of synaptic mechanism
NET_RECEIVE(weight(microsiemens)) {

}

Efficient divergence

Multiple NetCons with a common source
share a single threshold detector

Spike - .
SRS Spike Postsynaptic
initiation Delay 0 ng ;
zone detector region 0
Postsynaptic
Delay 1 gsg region 1

Page 142 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Multiple NetCons can share
a single target (many inputs,
but only one equation)

Efficient convergence

Spike Spike Postsynaptic
|Zn0|tr|]aét|8n dgtectoro Delay 0 gsgregiog P
Spike Spike
initation detector 1 Delay 1
Example: g with fast rise
and exponential decay
NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, 1
NONSPECIFIC_CURRENT i
}
declarations
INITIAL { g = 0 }
BREAKPOINT {
SOLVE state METHOD cnexp
i=g9*(v-e)
3
DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g =g + w }

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 143

Didactic Presentations The NEURON Simulation Environment

gs with fast rise and exponential decay
continued

g' R Z

V ~ [M

BREAKPOINT {
SOLVE state METHOD cnexp

i=g*(v-e)
}
DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(w (uS)) { g =9 + w }

Example: use-dependent synaptic plasticity

GSyn[0].g

0.003 —
ns

RE
LI

\\

0 20 40 60 80 100

[V

Page 144 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Use-dependent synaptic plasticity continued

BREAKPOINT {

SOLVE state METHOD cnexp oo el
g=8B-A
i-= g*(V'e) 0.002
} ~
DERIVATIVE state { o \\l\ \~~
A' = -A/taul
B' = -B/tau2 L!ﬁgg b
} 0 20 40 60 80 100

NET_RECEIVE(weight (uS), w, G1, G2, t0 (ms)) {
INITIAL {w=0 G1=0 G2=0 tO0=t}
G1 Gl*exp(-(t-to)/Gtaul)
G2 G2*exp(-(t-t0)/Gtau2)

Gl + Ginc*Gfactor
G2 + Ginc*Gfactor
t

weight*(1 + G2 - G1)

g+ w

A + w*factor

B + w*factor

[p}
=
nmmmn

Artificial spiking cells
"Integrate and fire" cells

Prerequisite: all state variables must be
analytically computable from a new initial condition

Orders of magnitude faster than numerical integration

Event-driven simulation run time is
proportional to # of received events
independent of # of cells, # of connections,

and problem time

Hybrid networks

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 145

Didactic Presentations

The NEURON Simulation Environment

Example: leaky integrate and fire model

S1
S2

1
0.8
0.6
0.4
0.2

]

0

20 40 60 80 100

Leaky integrate and fire model continued

NEURON {
ARTIFICIAL_CELL IntFire
RANGE tau, m
}
declarations
INITIAL { m = 0O to =t }
NET_RECEIVE (w) {
m = m*exp(-(t-tO)/tau)
to = t
m=m+ w
if (m > 1) {
net_event(t)
m=20
}
}

Page 146

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

IntFire1[0] 08

tau (ms) 10 ;i 06

|ntF| rel ercm|dAF— 18 |, IntFire1(0].M
m 0 ’
0.2 k\
|l | 1 |

0 20 40 60 80 100

1 "
IntFire2[0] IntFire2[0].1
taus (ms) 20 ;] 08l
taum (ms) |10 lﬁl ok
IntFire2 | cEa—
nt-ire E | ¢
i 0
IntFire2[0].M
m 0 0.2[7
o | I | I J
0 20 40 60 80 100
IntFire4[0]
taue (ms) 5 ;] o
tauit (ms)|| 2 [10] IntFire4[0].M
taui2 (ms) 20 ;] 0.3)
IntFire4[0].E
1 18 50 3 01
IntFire4 |[===i=_ = ‘ Lo
0
< 04 2 40 60 700
il 0
i2_ o 0.3 IntFire{1L1 IntFire[1].M
S 05

Defining the types of cells

Artificial spiking cells
ARTIFICIAL_CELL with a NET_RECEIVE block
that calls net_event

NetStim, IntFirel, IntFire2, IntFire4

Biophysical model cells
"Real" model cells
Sections and density mechanisms

Synapses are POINT_PROCESSes
that affect membrane current
and have a NET_RECEIVE block,
e.g. ExpSyn, EXp2Syn

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 147

Didactic Presentations The NEURON Simulation Environment

Defining types of biophysical model cells

Encapsulate in a class

Export hoc class definition from CellBuilder or Network Builder

or
write your own in Python.

class Cell:
def __init__ (self)
specify geom, topol, biophys
soma = h.Section(name="'soma')
self.soma = soma
. etc.

cells[]

N = 1000

for i in range(N):
cell = Cell() # h.Cell() if Cell is defined in hoc
cells.append(cell)

Connecting cells

Which setup strategy is more efficient?

Iterate over sources

for each cell {
connect this cell to its targets

}
or iterate over targets?

for each cell {
connect sources to this cell

}

Page 148 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Connecting cells

For a net distributed over multiple CPUs,
it is most efficient to iterate over targets first.

for each cell {
connect sources to this cell

}

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 149

Didactic Presentations The NEURON Simulation Environment

Page 150 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NEURON Main Menu

cvode_active(l)

VariableTimeStep

Use variable dt
|0.001 i

VariableTimeStep

Use variable dt

Absolute Tolerance Scale Factors Numerical Method Selection

current model type: <*ODE*> DAE
ODE model allows any method
DAE model allows implicit fixed step or daspk
Implicit Fixed Step
C-NFixedStep
Cvode
Daspk
Local step
DAE and daspk require sparse solver, cvode requires tree solver

Mx=b tree solver
Mx=b sparse solver

2nd order threshold (for variable step)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 151

Didactic Presentations The NEURON Simulation Environment

RunControl

init (mv) | _] [0 3
Init & Run Graph x-100:1100 y-92:52
Stop

Continue til (ms) ¢ |5 ;] 407~ v(.5)
Continue for (ms) ¢ |1 E
Single Ste, al | | | | |
t(ms) J1000 0 |[| 200 400 600 800 1000

Tstop (ms lj | 1000 izl
dt (ms) |0.025 ;]
Points plotted/ms |40 E

Real Time (s) || 162

Insert/Remc

soma
pas
hh
ca

Figure 1
a. L3 Aspiny:
b. L4 Stellate |

7 Z b2
c. L3 Pyramid f
kv
d. L5 Pyramid ha

cad

RunControl

init (mv) <= _] [0 2
Init & Run Graph x-100:1100 y-92: 52

Stop
Continue til (ms) «1|_{[5 3 407 v(5)
Continue for (ms)d—'lj [1 E
SingIeSteJI || |

t(ms) | 1000 0 800
Tstop (ms D |1000 ;]

dt (ms) [6.131 E
Points plotted/ms |4O E
Real Time (s) § 36

—QN —
VariableTimeStep
E’Use variable dt
Absolute ToIerancelj [0.001 E

Atol Scale TooII Details I

Page 152 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Graph Change Textx-100:1100 y -92:52 Graph Pick Vector x 664 : 676 y —92 : 52
401 3376 steps 401
v(.5) v(.5)
0 0 | | \: H | |
1000 665 667 669 671 673 675
—40 —40 — J
80 — 80 —
Graph Move Textx-100:1100 y-3.4:1.4 Graph Move Text x 664 : 676 y-3.4:1.4
1- log10(dt +1e-9) 1 log10(dt + 1e-9)
N
° o
[f 200 400 60 800 r 1000
_1 —
_2 —
_3 —
Graph Move Textx-100:1100 y-0.5:5.5 Graph Move Textx 664 :676 y-0.5:5.5
5 cvode.order 5 cvode.order
41 4
3 | il
2r 2
1 1~
0 | | | | | 0 | | | | |
o] 200 400 A0N ’0N 1000 ARG AR7 ARO A71 A73 A75

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 153

Didactic Presentations The NEURON Simulation Environment

ModelDB: Model Information http://senselab.med.yale.edu/senselab/ModelDB/ShowModel.as
[3
g S ey
[Toemeta] | ModelDB

—

Spinal Motor Neuron: McIntyre et al 2002

Simulation of peripheral nervous system (PNS) mylelinated axon. This model is described in detail in: Mclntyre C
Grill WM.(2002)

Reference: Mcintyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of Mammalian nerve fibers: in
afterpotentials on the recovery cycldNeurophysiol 87:995-1006 [PubMed

Citations Citation Browser

Model Information (Click on a link to find other models with that property)
Model Type: Axon;
Cell Type(s): Spinal motor neuron;
Channel(s): | Nap; | Nat; | K; | Sodium; | Potassium;
Receptor(s):
Transmitter(s):
Simulation Environment: Neuron;
Model Concept(s): Axonal Action Potentials; Action Potentials;

Implementer(s): Maclntyre, CC ;
Search NeuronDB for information about: Spinal motor neuron; | Na,p; | Nat; | K; | Sodium; | Potassium;

Model files Download zip file | Auto-launch | Help downloading and running models
@\ SIMULATION OF PNS MYELINATED AXON

o MRGaxon
o README

» AXNODE.mod Mcintyre CC, Richardson AG, and Grill WM. Modeling the excitability of
n MRGaxon.hoc 'mammalian nerve fibers: influence of afterpotentials on the recovery
B mosinit.hoc cycle. Journal of Neurophysiology 87:995-1006, 2002.

o MRGaxon.ses

This model is described in detail in:

The nodel is set up to reproduce part of Fig 2A fromthis paper.

This nodel can not be used with NEURON v5.1 as errors in the
extracel |l ul ar nechanismof v5.1 exist related to xc. The original
stinmulations were run on v4.3.1. NEURON v5.2 has corrected the
limtations in v5.1 and can be used to run this nodel.

Pl ease contact ntintyre@ne.jhu.edu if you have any questions about

Total site hits since January 1, 2002: 346093

ModelDB Home Sensel.ab Home Help
Questions, comments, problems? Email the Model DB Administrator
How to cite ModelDB

Page 154 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

ModelView[0]

Graph[0] Crosshairx-15:165 y-81:-69

node[10].v(0.5)
—70 [~
=72~
| 37s
—74
dt=.005 (ms)
—76
—78
80 \ | |
n 50 100 150
Graph Change Text x —2000 : 22000 y —81: -6
_ 5ms
70 vext(gl) -75
NN
741
76 |
—78[
., LUUUUUUUUUUUUUOU
n 5000 10000 15000 20000

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 155

Didactic Presentations The NEURON Simulation Environment

DIapIU] IVIUVT ITALA 1Y . 1VUY y 0OL. VI

37s node[10].v(0.5)
—T01 gt =
dt=.005 (ms) VariableTimeStep
—72 " 2's 1070 steps E'Use variable dt
Absolute Tolerance|_{ [0.001 E
—74 I
Atol Scale TooII Details
—76
-78 |
‘ ‘ N Numerical Method Selection
—80 N Refresh Iz
0 A0 100 150 current model type: ODE <*DAE*>
ODE model allows any method
DAE model allows implicit fixed step or daspk
Graph[0] Move Textx 0.98:1.22 y-92: 52 Implicit Fixed Step
 37s node[10].v(0.5) o nFedStep
40" gt=.005 (ms) Daspk =
Local step
DAE and daspk require sparse solver, cvode requires tree solver
2's 1070 steps E'Mx:b tree solver
0 | | | | Mx=b sparse solver
1 105 1.1 1.15 12 D 2nd order threshold (for variable step)
K
_40 —
—oU

Page 156 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

LinearCircuit[0]

v Arrange
v Label

v Parameters
4 Simulate

Parameters

Source f(t)

Initial Conditionsl

Vv States
axon[1](0) axon[2](0) New Graph
Namemap
Hints I

Didactic Presentations

NewView x —56.8 : 224.203 y -39.2291 : ¢

axon[2]

axon

Graph[4] Move Textx —30:330 y-92:52
4 3ms v,
0 | | |
100 15ms 300
_40 —
-80 —

LincirGraphl[0] for LinearCircuit[0]

PlotWhat? |

00

300

100

100

300

8

Control | (nA)

LincirGraph[1] for LinearCircuit[0]

40

| PlotWhat? |

Vm (mV)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 157

Didactic Presentations The NEURON Simulation Environment

VariableTimeStep

LinearCircuit[0] Use variable dt
v Arrange i'ﬁi | i
/—{ . 3 Label 0.001
~ Parameters
| € S Aol Scale Tool|_Detais |

\

C R1 H\
o

axon[1](0) axon[2](0)

Values for LinearCircuit[0]

NewView x 0.86:1.34 y —36: 36

30 Vm (mV)

10—

11 12 13

o
©
=

<

Page 158 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Fixed dt (analytical)
STATE { 0 }

BREAKPOINT {
SOLVE state
ik = gbar*o*(v-ek)

}
LOCAL fac

PROCEDURE state() {
rate(v)
0 = o + fac*(oinf-o0)

}

PROCEDURE rate(v(mVv)) {
LOCAL a
a = alp(v)
tau = 1/(a + bet(v))
oinf = a*tau
fac = (1 - exp(-dt/tau))

Dynamics specified by ODE
STATE { 0 }

BREAKPOINT {
SOLVE state METHOD cnexp
ik = gbar*o*(v-ek)

}

DERIVATIVE state {
rate(v)
o' = (oinf-o0)/tau

}

PROCEDURE rate(v(mV)) {
LOCAL a
a = alp(v)
tau = 1/(a + bet(v))
oinf = a*tau

}

BREAKPOINT {
if (t >= del) {

i = f(t-del)
} else {
i=20

b
¥

Abrupt parameter change

<4—— at_time(del)

*** deprecated ***

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 159

Didactic Presentations

Page 160

The NEURON Simulation Environment

Fixed dt only

BREAKPOINT {
if (t>=del) {

i = f(t-del)
} else {
i=0

b
b

Better: self-event!

INITIAL {
on =0
net_send(del, 1)
}

BREAKPOINT {
if (on == 1) {

i = f(t-del)
} else {
i=0

b
3

NET_RECEIVE(w) {
if (flag == 1) {
on =1
3
}

Using hoc to control what happens in a simulation

At time t1 do X

Old: change std run system

proc advance() {
fadvance()
if (t ==1t1) { p() }
}

Better: use events

fih = new FInitializeHandler("ev()")
proc ev() {

cvode.event(t1, "p()")
}

proc p() {

. statements . . .

If Y happens do X

Old: change std run system

proc advance() {

fadvance()

if (soma.v(0.5) > 10) { p() }
}

Better: use events

soma {nc = new NetCon(&v(0.5), nil)
nc.threshold = 10
nc.record("p()")

// if p changed ANY parameters or states

// then be sure to
// cvode.re_init()

}

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Using Python to control what happens in a simulation
by means of events!

At time t1 do X

fih = h.FInitializeHandler (0,ev)
def ev():

h.cvode.event(t1, p)
}

If Y happens do X

nc = h.NetCon(soma(0.5)._ref_v, None, sec=soma)
nc.threshold = 10
nc.record(p)

def p:
. statements . . .
if p changed ANY parameters or states
then be sure to
h.cvode.re_init()

3

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 161

Didactic Presentations

Graph NewView x-0.5:5.5 y-92:52

40

0
5

v(.5)

| | |
4 5

Graph Crosshairx—0.5:5.5y-1.2:1.2

0.5

05

-1

SEClamp[0].i

The NEURON Simulation Environment

Graph NewView x-0.5:5.5 y-92:52
401 v(5) Graph NewViewx 0.74:1.46 y—74: -
_w —
V(.5)
0 | | | | |
1 2 4 5 40
50 -
-40 [
60—
-80 — 70
no 1 19 11
Graph Crosshairx-0.5:5.5 y-1.2:1.2
ir SEClampl[0].i Graph Crosshairx0.74:1.46 y—0.6 :
D.5
05 ISE[Clamp]0].
D.3
I
0 D.1
1 5 | L |
0P 1 [12 il
05
03
1 05
VectorPlay[0]

[" Connected I SEClamp[0].amp1

50

PN

Graph[0] x-0.5:5.5 y-92:52

40

v(.5)

N\

Graph[0] x0.74:1.46 y—74:-26

0)

r70

no 1 19 1.4

Graph[2] NewViewx-0.5:5.5y-1.2:1.2

0.5

05

SEClampl[0].i

"

| | J
1 2

3 4 5

Graph[2] NewView x0.74:1.46 y-0.6

D51

SEClampl[0].i
D31 H
D11
L b
008 1 12 14
03
05—

soma vvec.play(&SEClamp[0].ampl, tvec, 1)

Page 162

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 163

Didactic Presentations The NEURON Simulation Environment

Page 164 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NetPyNE

Network Python for NEURON simulations
Declarative high-level descriptors which are
translated into NEURON

» See paper: elifesciences.org/articles/44494
netpyne.org has doc, tutorials, fora

(
\ f = HOME MAGAZINE INNOVATION O\

NetPyNE, a tool for data-driven
multiscale modeling of brain circuits

aooa

Salvador Dura-Bernal , Benjamin A Suter, Padraig Gleeson, Matteo Cantarelli, Adrian
Quintana, Facundo Rodriguez, David | Kedziora, George L Chadderdon, Cliff C Kerr, Samuel
A Neymotin, Robert A McDougal, Michael Hines, Gordon M G Shepherd, William W Lytton

State University of New York Downstate Medical C

States; University College London, United Kingdom; Metacell LLC, Unit tates; EyeSeeTea

Kingdom; University of Sydney, Australia; Yale Universi

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 165

Didactic Presentations The NEURON Simulation Environment

Features

f Presynaptic location

(=)
@
c N
9 E
5 E
: g g
3 -(,CzL £
e T oo s S
,,,,,, @ o j2} t—1
- [
AR o 5 T U Y i . .1 2 o
i e S
= ’ =8 pO wposr,prs (&)
pA ———T—T 1.0
0 0.5 1.0
-15 Cortical depth (normalized)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, & - -
,,,,,,,,,,,,,,,,,,,,,,,,, Tl e P SR i

Features

model parameters from standardized implementation

format - easy to read, interpret, edit, share, reproduce, etc

popParams['EXC L2'] = { for gid in range(pop.numCells):
: 'PYR', cell = sim.Cell ()
[100, 4007, cell.y = numpy.random(100,400)
50} cell.type = ‘PYR’

pc.cell(gid, h.NetCon (v_soma , threshold))

Models have very different implementations
(arbitrary functions, variables, file names etc.)

Page 166 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Features

Initialize
pe=h.ParallelContext()

* Facilitate model (reproducible)

Create Network

Create Cells

. parameter exploration/optimization gl

pe.cell()
pe.spike_record()

Connect Cells

— = pe.gid_connect()
[I o
c i n:r
5]
f : o Run parallel sim
H L pc.set_maxstep()
finitialize()
i pe.solve()
o 2
c i
=
5 | Ed Gather data
@ ® pe.py_alltoall()
b EN

Save and plot data
from master node

NetPyNE

Batch simulation module (parameter exploration, MPI/HPC job submission, etc)

| |

High level specifications Network instantiation Parallel Simulation
NEURON
cell models
ey Network Parameters
Representation of all Distribution and
« Cell properties cells, connections, etc gathering across
= Connectivity MPI nodes
NeuroML cel - b d — Lo RIECRON
e e simulator

models
Simulation config ¥
« Duration Simulation results
= Saving options

Spikes, voltage traces,

| |

Analysis and saving

Analysis and Visualization

Save to pickle, json, Export to NeuroML.
Connectivity matrix, raster plot, ... matndfs, formel
"g‘":‘:b Brian, NEST,
22 NewroML ~— MOOSE,
Pandas. PYNN
(el Y

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 167

Didactic Presentations The NEURON Simulation Environment

High level specifications

Cell connectivity rules
netParams. connParams ['S—>M'] =
‘preConds': {

'synMech': ‘exc'}

add exc connection

postSynl = h.ExpSyn(postCell.dend(@.5))
postSynl.tau = 2

postSynl.e = -90

preiCon = h.NetCon(preCelll.soma(0.5)._ref_v,
postSyn1,
sec=preCelll.soma)

preiCon.delay = 1

prelCon.weight[0] = 0.001

prelCon.threshold =

High level specifications

A Python format (JSON-like, lists and dicts) to define:
- cell type, number of neurons or density, spatial extent, ...
: Morphology, biophysics, molecular processes ...
: Time constants, reversal potential, ... /
: Spike generators, current clamps, spatiotemporal patterns, ... 0(;
: conditions of pre- and post-synaptic cells, functions, ...

: duration, saving and analysis, visualization, ... o—

Page 168 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

High level specifications

e Intra- and extracellular diffusion of ions, proteins (eg, calcium, potassium, IP3, ...)
e Cell internal structures/organelles (eg, endoplasmic reticulum, mitochondria,...)
e Molecular processes (eg, phosphorylation, buffering, 2nd messenger cascades,...)

e Interaction with cell and network scales (eg, firing, plasticity, ...)

N ,,,,;\\
< %

\—-—N
& N o
High level specifications
e Flexible connectivity rules based on pre- and post-synaptic cell properties (eg, type or location).

e Connectivity functions available: probabilistic, convergent, divergent, custom, ...
e Parameters (eg, probability, weight, delay) as a function of pre/post-synaptic spatial properties,

eg, delays or probability that depend on distance between cells or cortical depth.

Easily add synapses with learning mechanisms (STDP and RL) and gap junctions.

A L5A, 5B
15 -
<10 NetPyNE facilitates
| . .
bt building models
25
£ based on
0 experimental data
-200 0 400

Distance from
L5A/B border (um)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 169

Didactic Presentations The NEURON Simulation Environment

High level specifications

e Specify dendritic distribution of synapses as 1D or 2D density map, or based on distance from section

e Synaptic distribution automatically adapted to morphology of each cell model

B A\
L) i W an
f 2
: viZgael
£ i RS 0
ot
[S]
Dendritic distribution of synapses Synaptic locations automatically Synaptic density plot
based on experimental data calculated for each morphology

Network Instantiation

Interacting Populations Single Population

popLabel: 'L4'
cellType: 'PYR'

x: 100

NEURON
h.Section()

=
preGid: 0

4@

\m type: ICamp!
amp: 0.3

NEURON
h.iClamp()

Properties at all scales easy to access:

net.cells[5].secs.soma.mechs.hh.gnabar

Includes NEURON objects required for

simulation (removed when saving to file)

Page 170 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Parallel Simulation

e Set up for MPI parallel simulation across multiple nodes (via NEURON simulator).

e Takes care of balanced distribution of cells and gathering of simulation output from nodes.

Gather
simulation output

Analysis

%

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 171

Didactic Presentations

The NEURON Simulation Environment

Local Field Potentials
Single cell
. !
eeeeeeeeeeeeeeeeeeeee . 1 ‘
: w i " Hirpamrt it - i T J‘ n
v s;% I
Network “ | wét

Data Saving and Exporting

Save and load high-level specifications, network instance, simulation config, simulation results.

L
Multiple formats supported: pickle, JSON and Matlab (CSV and HDF5 in progress)

L
Export/import network instance to/from NeuroML and SONATA

{JSON}

:Neur'o]

Page 172

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Development, Simulation, Analysis via GUI

Batch Parallel Simulation

e Easy specification of parameters and range of values to explore in batch simulations (evolutionary + grid search)
e Pre-defined, configurable setups to automatically submit jobs in multicore machines (Bulletin board) or

supercomputers (SLURM or PBS Torque)

SDSC éﬁgE%COMPUTER CENTER

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 173

Didactic Presentations The NEURON Simulation Environment

Batch Parallel Simulation

University cluster [500
Scientific shared cluster 7200

Google Cloud 50,000

number of simultaneous cores

Batch Parallel Simulation

Page 174 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Table of Contents

« NetPyNE Overview
o What is NetPyNE?
© What can | do with NetPyNE?
o NetPyNE stn
o Major Features

© Questions, suggestions and contributions
o Publications.

= About NetPyNE

* Using NetPyNE

= Connectivity rules
o Simulation configuration options
o Network creation and simulation
o Adding a compartment (dendrite) to cels (Tutorial 3)
o Using a simplified cell model (izhikevich) (Tutorial 4)
o Position and distance based connectivity (Tutorial 5)
o Adding stimulation to the network (Tutorial 6)
Modifying the instantiated network interactively (Tutorial 7)
© Running batch simulations (Tutorial 8)
o Recording and plotting LFPs (Tutorial 9)
« Package Reference

Documentation and Tutorials

Finally, we add inhibitory connections whi
Ceelizype's '2'))

h will project only onto exciatory celis, specified here using the pop attrbute, for lusirative purposes (an equivalent rule would be: *postconda’ +

o make the probably of connection decay exponentil as a function of distance with a given length constant

we can use the following 4 expression

xp(-dist_3D/problengthconst) . The code for the inhibitory connectivty ule is therefore:

netparans. connparams(-5] =
preconds1 {*cellty

WA by

The full tutoral code for this example s available here: tuts.py.

‘www.neuron.yale.edu

Quicknks @ 7AQ
Board index < Toolsof interest to NEURON users « NetPYNE

NetPyNE

Moderator: tom_mrse

New Topic # Search this forum.

VERSION RELEASES 13 826 by salvadord
by salvadord » Fri Jun 09, 2017 10:41 pm Tue Jul 10, 20;

7) Welcome to the NetPYNE Forum! _ I s004 b salvador
by salvadord » Tue M 017 10:50 pm

Q&A and Forums

<
Tue May 16, 2017 10:50 pm

Search for mess

NetPyNE Q&A forum sna

10 11 topics * [

Google

Groups
@ register O Login

Men About @

NetPYNE (wiw netpyne.org) is a high-level python inferface to NEURON that failtates the development, parallel simulation and analysis
, answers and comments about the (0ol
Our previous Q&A forum with many posts can be found here: hitps:/www.neuron yale.edu/phpBB viewlorum. php?(=45

Edit welcome message Clear wel

me message
Batch simulation in NSG
By angelussong@gmail.com

Network with muliple population
By angelussong@gmail.com

Importing HDF data to NetPyNE
Krishna Chaitanya » Mon Jul 30, 2018 9:31 am

by salvadord

Mon Jul 30, 2018 8:56 pm

Expliit st of synaptic connections.
By mach512@gmail.com

Questions about convergence function, random seeds,

Setpointer when defining a synapse 2 144
Noémie » Fri Jun 22, 2018 4:30 am

by salvadord
i Ju Wed Jul

04, 2018 4:36 pm

By vihaynes tech@gmail.com

NoV output
By angelussong@gmal.com

AMPAIGABA synapse establishment
By hsong1@fandm.edu

Refractory Period
By Vergi R. Haynes

Synapse and detailed connectivty questions
By hsong1@fandm.edu

plotLFP

by bremen » Fri Dec 08, 2017 7:55 am

Spike source and target sections 7 by bremen

oy salvadord » Mon Nov 27, 2017 12 1@ 5034 ot May 12, 2018 12:07 pm
Import json format of morphology to NetPyNE 5 167 byted

by Javad » Fri May 04, 2018 3:02 pm St May 06, 2018 1:30 pm
Slow speed to save sim results 2 182 bybremen

by bremen » Sat Apr 21, 2018 10:32 am Sot Apr 28, 2018 3:15 pm

Field names are restricted to 31 characters 6o bybremen

by bremen » Sat Mar 24, 2018 1:36 pm & 169 sinMar 25, 2018 6:21 am
plotLFP 106 by saivadord

by atknox » Fri Mar 02, 2018 6:44 pm Wed Mar 21, 2018 6:20 pm
Mat file not saved properly in batch functions 213 bysaadord

by Vitorio » Thu Feb 15, 2018 10:58 am e Thu Feb 15, 2018 11:30 am
Gap junction support - parallel simulation? 5 230 by savadord

by tmc » Wed Jan 24, 2018 10:18 pm Thu Feb 08, 2018 12:41 pm
Netpyne on clusters 4 671 by bremen

Thu Dec 14, 2017 7:57 am

By atinox@gmail.com

Importson format of morphology to NetPYNE
By Javad Paknahad

GPUs or ntel xeon phi coprocessor
By atknox@gmail.com

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 175

Didactic Presentations The NEURON Simulation Environment

Existing NetPyNE Models

Traub thalamocortical network (P. Gleeson, UCL / S. Crook, Arizona)
Hippocampus CA3 (B. Tessler, SUNY DMC)

Spinal cord circuits (V. Caggiano, IBM Watson)

Striatal microcircuits (Hanbing/Christina Weaver, Franklin and Marshall College)
V1 network (Vinicius/Antonio Roque, Sao Paulo University)
Cerebellum (Sergio Solinas/Stefano Masoli, University of Pavia)
Dentate Gyrus (F. Rodriguez, SUNY DMC)

Ischemia in cortical network (Alex Seidenstein, SUNY DMC)
TMS/tDCS network (Aman Aberra, Duke University)

LFP oscillations (Christian Fink, Ohio Wesleyan)

Dendritic computations (Birgit Kriener, Oslo)

Thalamocortical epilepsy network (Andrew Knox, Cincinatti Hospital)

X

Full list of 53 models (many under development): www.netpyne.org/models

Potjan’s and Diesmann model

~80k neurons (point model in NMODL) 77 i
~300M SynapSES other background input Z/9
4

Converted to NetPyNE
. 4
Executed on Google Cloud p
™ T

Page 176 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Potjan’s and Diesmann model

0 5 10152 2%

Figure 3: Statistics of spiking activity of all 8 neural
populations for rescaling of the PD model to 100% of its
original size (around 80,000 neurons). NEST model on the left
and NetPyNe model on the right.

time [ms]

Figure 2: Raster plots network models scaled down
to 100% of the original size (with around 80,000
neurons). NEST model on the left and NetPyNE
model on the right.

Human Neocortical Neurosolver

e Stephanie Jones (Brown), Pl of NIH BRAIN R01 = e
e Tool to reproduce/understand EEG/MEG signals ‘

using bhiophysical circuit model

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 177

Didactic Presentations The NEURON Simulation Environment

Human Neocortical Neurosolver

e Converted circuit model to NetPyNE

e Facilitate scaling, extension and customization

Mouse M1 microcircuits model

Full scale cylinder of 300 pm (diameter) x 1350 pm (cortical depth)
~10,000 neurons of 5 classes distributed in 15 populations

~30M synapses

Page 178 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

. . . .
Cortical circuits: experin iental data
.
L4t IT PT CT
S Pyt Bt S V7 X I - | AT Y Y e . _ _ ____
G | (R § 1 [AR — S — — =W -~~~ ~YeRiK-- -~—-—-----
3 L . g
A P;«:}f t 77 | g 4
4 a 3
i
5A
S T T T e TE
,,, e s - L
6A 3 {
. s AP S
6B oo i amns st ot st S e d e et e St S mioev shoiey. oten s (das Saan Coges soedfbgot won ohes dege Sgee gy e Soll
M1 model '
.
odel: cell types and populatlons
A
Density Layer NCD Populations Cell classes
10‘/r§:1r?ns 0 (pia) (num cells) | IT: Intratelencephalic
L1 | | (Cortico-cortical and
00 0.1 l l Corticostriatal)
1103 L2/3 ‘l, ’
L4 029 {r;:o) © I;VZ L PT: Pyramidal tract
1118 037 SOI“ 2“7"2) B57) Af % | (Corticospinal)
£ st LA 047 (67 6 ¢
3 = SOM5A PV5A
K (56) (14)
Ll T5A I
- 1099 L58 64) 3 L CT: Corticothalamic
/ e ¢
M5B PT5B SOM5B PV5B .
Us (1435) (a3 @5 6N SOM: Somatostatin
1426 L6 interneuron (LTS)
- © © [*
B 1.0 (WM) UL . Mo))
(1236) (1236) (90) (184) PV: Parvalbumin
300 ym 1350 um // “interneuron (FS)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 179

Didactic Presentations The NEURON Simulation Environment

M1 model: single neuron models

Reproduce morphology and physiology of

S A real neurons

11111

- lonic channel parameters optimized to match
MMUM ‘ ‘ Il “ data (Na, Kdr, Ka, Kd, HCN, CaL, CaN, KCa)

\ UMD, A

o, JA

“ JMAMEARE, ML,
J AU L

0.5sec

100pm

M1 model: connectivity
Incorporates connectivity data at multiple scales

Long-range inputs Local microcircuits Dendritic inputs

Relative input strength Long-range Interlaminar f Presynaptic location
inputs excitatory circuits

|_2/3: \%@' -
L5A \ia - [59“50“/ Y
] thalamus ™/
Motor
» Lmalamus
1 - w2 W)
/ oc

L5B

Postsynaptic location
Cortical depth (normalized)

-
o

o
>

L6

H_15 Cortical depth (normalized)

Page 180 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

M1 model: connectivity
u 0
- Main long-range and local 04
excitatory connections L3 "
- Depends on cell class and L Z: /
cortical depth (100 um resolution) a1\
L5B Y 3 t
0.8
m NN |
1.0 }
AAA |
IT PT CT PO VL S1 cM1 OC
§2 M2

M1 model: connectivity

m | [
‘\‘& - o ,KTT

2
VL thalamus -> PT , S2-> PT
Experimental data Synaptic locations/density across neuron (simulation)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 181

Didactic Presentations

The NEURON Simulation Environment

M1

model: firing properties

L2/3

L4

L5A

L5B

L6

- Depend on cell class, layer and sublaminar location

- Match cortical data

cr cr

SOM —II:I—| SOM
o 7]:_ o

0 10 20 30 40 0 2 4 6 8
Rate (Hz) Irregularity (ISI CV)

Population

741

- Delta and beta/gamma range

H\ hﬂwm |I
“ . \'\ ‘tr I\
- Emerged without rhythmic inputs \N" ud YW \,wml\ i g“f,‘ ""rl v ” ;f”"”(‘..«
|\ " poor
- Phase-amplitude coupling - ! W J| i ’ﬂ
- Role in movement - 7 e e \‘
IRy

M1 model: LFP oscillations

LFP 0-200 Hz

Experimental data

i Y PFC delta-gamma PAC
il Wi, 0o “‘H\ Il “ .

Motor cortex LFP power

Frequency (Hz)

Time (ms)

Page 182

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

M1 model: information flow

0N — T4 1T23
- Granger Causality analysis " o o
foghelry

-IT — PT but not opposite direction

Granger Causality

- Peak in beta/gamma

Granger Causality

a0 10
Frequency (Hz)

M1 model: pathway dynamics

Sensory-related inputs (thalamus) Motor-related inputs (M2)
L1 L1
L2/3 PR L2/3
L4 *“ L4
L5A — L5A
LSB k PT5B |_5B A 7 PTSB
L6 - L6 7
A A
T PT CT TPO - S moPTocr uz

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 183

Didactic Presentations The NEURON Simulation Environment

M1 model: multiscale interactions

Evaluate molecular/pharmacological effects:
blocking HCN channels (Ih) reduces PT output

Experiment Model Norepinephrine
dendritic
Control Control Y spike
‘ ‘ Ih open I In closed
H l \ | l | | | ‘ | ‘ | I _u/l\
+7D7288 +2D7288 (Block HCN)
TR
1 sec

Page 184 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 185

Didactic Presentations The NEURON Simulation Environment

Page 186 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 1

Initialization, broadly speaking:

We want to get the same result every time we click
on Init & Run, no matter what we did before

Note: this presentation explicitly omits details of initialization
of ionic concentrations and equilibrium potentials

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide £

Initialization should assign values at t = 0 for
membrane potential
gating states
ionic concentrations
chemical kinetic states
voltage across capacitors in linear circuits
internal states of op amps
random number generators

and properly configure
event queues
vector record and play
counters

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 187

Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide €

NEURON's finitialize()
e setst=0
« Clears event queue
« sets up internal data structures that depend on topology and geometry
o initializes vector.play controller
o delivers events whose delivery time is 0
o if finitialize was called with v_init argument,
sets v in all compartments to v_init
« calls INITIAL block of every inserted mechanism in every segment
e if extracellular is used, sets vext to 0
« initializes ions; calculates equilibrium potentials if necessary
« initializes mechanisms that WRITE ion concentrations;
recalcs equilib potentials as needed
« calls all other INITIAL blocks
e initializes LinearMechanism states
« calls INITIAL blocks inside NET _RECEIVE blocks; if this spawns network events,
delivers any whose delay is 0 to their target NET RECEIVE blocks
« if fixed time step integrator is used, calls all BREAKPOINT blocks
« initializes adaptive integrator (if being used)
« intializes any cvode.record and vector.record recordings

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 7

Default initialization: the standard run library
nrn/share/nrn/lib/hoc/stdrun.hoc
(MSWin: c:\nrn\lib\hoc\stdrun.hoc)

stdinit()

Called when you
click on Init or Init & Run in the RunControl
or
enter a new value for v_init in the Init button's field editor

proc stdinit() {
cvode simgraph()
realtime=0 // "run time" in seconds
setdt ()
init()
initPlot ()

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 188 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide €

init()
Most customizations are made here

proc init() {
finitialize(v_init)
// Extra initialization should normally go here.
// I1If you change any states or parameters after
// an finitialize, then you should complete
// the initialization with
/*
if (cvode.active()) {
cvode.re init()
} else {
fcurrent ()
}
frecord init()
*/

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide ¢

INITIAL blocks in NMODL

HH-like mechanisms

PROCEDURE rates(v(mv)) {
minf = alpha(v)/(alpha(v) + beta(v))

INITIAL {
rates(v)
m = minf

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 189

Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 1C

Kinetic schemes

INITIAL {
SOLVE scheme METHOD steadystate
}
e.g.
NEURON {
USEION k READ ek WRITE ik
}
STATE { cl c2 o }
INITIAL {
SOLVE scheme METHOD steadystate
}

BREAKPOINT {
SOLVE scheme METHOD sparse
ik = gbar*o*(v - ek)
}KINETIC scheme {
rates(v) : calculate the 4 k rates.
~ cl <-> c2 (k1l2, k21)
~ c2 <-> o (k20, ko2)

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 11

Default initialization of STATES

Use state0, e.g.

PARAMETER {
state0 =1
}
or alternative syntax
STATE {
state START 1
}
It's best to be explicit
INITIAL {
m = mO0
h = ho
}
To make them visible from hoc or Python

NEURON {
GLOBAL m0
RANGE h0

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 190 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 12

Typical custom initializations
Steady state
unperturbed system
system under constant voltage or current clamp
Defined starting point on a trajectory
of an oscillating or chaotic system
Adjust parameters to meet some condition

How?

hoc: Use a custom init () procedure
loaded after the standard library
so it won't be overwritten.

Python: Use an FInitializeHandler (much cleaner).

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 1&

class FlnitializeHandler
Syntax:
fih = h.FInitializeHandler (py_callable)

fih = h.FInitializeHandler (type, py_callable)
Description:

Install an initialization handler statement to be called during a call
to finitialize (). The default typeis 1.

Type 1 handlers are called after the mechanism INITIAL blocks.
This is the best place to change state values.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 191

Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 14

Initializing to steady state

"Travel into the past," take large steps with implicit Euler, then return to the present.
def ssinit():
these params depend on your model
T0 = -1e3 # how far back to jump
DUR = le2 # time allowed to reach steady state
DT = 0.025 # to restore h.dt if simulation uses var dt
#
h.t = TO # jump back
if cvode is on, turn it off
tmp = h.cvode.active()
if (tmp!=0):
h.cvode.active(0)
h.dt = DT # prevent crazy large h.dt
while (h.t < TO + DUR): h.fadvance()
h.t = 0 # return to the present
restore cvode if necessary
if (tmp!=0): h.cvode.active(1l)
if (h.cvode.active()):
h.cvode.re_init()
else:
h.fcurrent()
h.frecord init()

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 1£

Initializing to a desired state
Especially useful for oscillating or chaotic models.

Run a "warmup simulation,” then save the states

svstate = h.SaveState()
svstate.save()

If desired, write state info to a file for future use

f = h.File("states.dat")
svstate.fwrite(f)

To read from a file

svstate = h.SaveState()
f = h.File("states.dat")
svstate.fread(f)

Then use an FlinitializeHandler to restore the saved states.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 192 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The NEURON Simulation Environment Slide 1€

Initializing to a desired state continued

Using an FInitializeHandler to restore the saved states.

def restate():
svstate.restore()
h.t = 0 // t is one of the "states"
if (h.cvode.active()):
h.cvode.re init()
else:
h.fcurrent ()
frecord_init()

fih = h.FInitializeHandler(restate)

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 17

Initializing to a particular resting potential

One approach: adjust the leakage equilibrium potential
so that leakage current balances the other ionic currents
when the cell is at the desired resting potential

Example: for a single compartment model with hh

h.finitialize(h.v_init) # set all v to v_init

def fixrp():
etmp = (soma.inat+soma.ik+soma.gl hh*h.v init)/soma.gl hh
soma.el hh = etmp
if (h.cvode.active()):
cvode.re_init()
else:
h.fcurrent ()
h.frecord init()

fih = h.FInitializeHandler(rpl)

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 193

Didactic Presentations The NEURON Simulation Environment

The NEURON Simulation Environment Slide 1€

Alternative strategy: add a mechanism that injects a constant current
to balance the other currents.

Example:
NEURON {
SUFFIX constant
NONSPECIFIC_CURRENT i
RANGE i, ic

}
UNITS {

(mA) = (milliamp)
}

PARAMETER {
ic = 0 (mA/cm2)

}

ASSIGNED {
i (mA/cm2)

}

BREAKPOINT {
i = ic

}

This needs a different FlnitializeHandler.

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Simulation Environment Slide 1¢

FInitializeHandler to use with constant current mechanism:

soma.insert('constant') # make sure constant exists
h.finitialize(h.v_init) # set all v to v_init

def rp2():
soma.ic_constant = -(soma.ina + soma.ik + soma.il hh)
if (h.cvode.active()):
h.cvode.re init()
else:
h.fcurrent()
h.frecord_init()

fih = h.FInitializeHandler(rp2)

Copyright © 1998-2017 N.T. Carnevale and M.L. Hines, all rights reserved

Page 194 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 195

Didactic Presentations The NEURON Simulation Environment

Page 196 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

HOC

for reading knowledge

Robert A. McDougal

Yale School of Medicine

HOC in History

@ HOC was introduced in Kernighan and Pike (1984) to demonstrate using
Yacc.

e HOC = Higher Order Calculator
@ oc = object-oriented extension
e HOC was NEURON's original programming language.

e Hundreds of NEURON models in HOC from before (and after) Python
support was added are available on ModelDB.

Objective: Be able to read HOC code, so that we can understand what it does
and use it from Python.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 197

Didactic Presentations The NEURON Simulation Environment

Accessing a HOC interpreter

NEURON's HOC interpreter may be accessed by typing nrniv or double clicking
the corresponding icon:

Roberts-MBP:~ ramcdougal$ nrniv

NEURON -- VERSION 7.6.1 master (a558837) 2018-08-01

Duke, Yale, and the BlueBrain Project -- Copyright 1984-2018
See http://neuron.yale.edu/neuron/credits

oc>
To exit nrniv, press ctrl-D at the prompt or type quit ()

Note: launching nrniv does not load the compiled mechanisms automatically. To
do that, launch nrngui instead.

nrn_load-d11 can be used to load MOD file mechanisms from nrniv.
nrniv and nrngui can both take a filename parameter to run the file automatically, e.g. nrniv my_file.hoc

To run an MPI simulation with nrniv, use the -mpi flag, e.g. mpiexec -n 4 nrniv -mpi my.file.hoc

To learn more: Programmer's reference pages also in HOC

[Graph — NEURON 7.5 dacum: x Robert

& Secure | https://www.neuron.yale.edu/neuron/static/py_doc/visualization/graph.htm Q Y

NEURON 7.5 documentation » Switch to HOC | previous | next | modules | index
Previous topic Graph

Glyph

i class Graph

Next topic

Grapher Syntax:
This Page 9 = RIGHRL)

Show Source g = h.Graph(0)
Questions? Description:

LS e ey An instance of the Graph class manages a window on which x-y plots can be drawn by calling vari-
Quick search ous member functions. The first form immediately maps the window to the screen. With a 0 argu-
ment the window is not mapped but can be sized and placed with the view() function.

Go Example:

The most basic interpreter prototype for producing a plot follows:

from neuron import h, gui
import math

Create the graph
g = h.Graph()

specify coordinate system for the canvas drawing area
numbers are: xmin, xmax, ymin, ymax respectively
g.size(0, 10, -1, 1)

the next g.line command will move the drawing pen to the

indicated point without drawing anything
g.beginline()

Page 198 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

To learn more: The NEURON Book and ModelDB

The NEURON Book provides a HOC introduction and all examples are in HOC:

NEURON *°
BOOK

NERIOL | Lareea e
IRE FHLIF L HIBF

Search ModelDB for specific terms and restrict your searches to HOC files:

finitializehandler file:*.hoc

Basic HOC syntax

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 199

Didactic Presentations The NEURON Simulation Environment

Flow control

Familiar flow control statements are available in HOC:

if
if (a == b) {
print "same"
} else {
print "different"
}
for

for i =1, 5 {
print i
} // note: both end points are included

for (1 = 1; 1 < 1025, i *= 2) {
print i

}

Flow control

while

i=0

while (i < 7) {
i=1i+2
print i

} // prints 2, 4, 6, 8

Page 200 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Grouping statements

Unlike Python which uses indentation to indicate grouping, e.g.

for i in range(10):
print (i)

HOC uses curly brackets like C++4, JavaScript, etc:

for(i=0; i<10; i+=1) {
print i

}

It's good style to also indent HOC code, but not everyone did. Indentation may
also be inconsistent.

In fact, HOC uses context to figure out when an instruction end, so you may run
into multiple instructions on one line:

for(i=0; i<10; i+=1) {j = i * 2 print j}

Arithmetic operators are the same in HOC and Python:
+ - x / %
Comparison operators are the same in HOC and Python:
< <= = >= >

Logical operators are not the same:

HOC Python
&& and
|l or
! not

Note that unlike Python, HOC has no explicit concepts of True or False and
uses numbers for these purposes instead, with 0 for False and non-zero for True.

oc>print 4 < 2, 2 < 4

01

oc>print 4 < 2 || 2 < 4
1

oc>print (4 < 2)

1

Python understands this notation as well, but provides explicits boolean variables.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 201

Didactic Presentations The NEURON Simulation Environment

HOC — Python gotchas: fuzzy comparisons

HOC allows fuzzy comparisons.
The variable float_epsilon sets the tolerance for equality.

By default, it is 107!, which is several orders of magnitude larger than machine
epsilon. So numbers that compare equal in HOC may not compare equal in
Python.

Example:

oc>1 < 1.01

1
oc>float_epsilon = 0.1
oc>1 < 1.01

0
oc>1 == 1.01

1

The good news: as of 8/10/18, only one ModelDB model sets float_epsilon.

The bad news: even when it is not explicitly set, comparison works differently in
HOC and Python.

HOC uses rigid data types.

Once a variable name has been used to store a given data type, it cannot be used
again for a different data type. Doubles (floating point numbers) may be used
without explicit declaration:

x =2
Strings must be declared before use:

strdef s
s = "hello world" // only double quotes are allowed

Objects must also be declared:

objref pyobj
pyobj = new PythonObject()

HOC does not explicitly have a concept of integers or booleans.

Page 202 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Comments

HOC provides two forms of comments:

// denotes a comment that continues until end of line (same as Python's #):

a=2
// increment a by one
a+=1

/* with a matching */ denotes arbitrarily long, arbitrarily located comments
a = /* please don't do this but it is valid HOC */ 2

There is no direct Python equivalent, but when used as multi-line comments, this
is similar to using a multi-line string for commenting in Python:

proc solve_three_body_problem() {
/*
Analytically solves the three body problem

Implementation left as an exercise for the reader.

*/

HOC has two types of callables: func and proc. These correspond to Python def
that respectively do or do not return a value.

proc say_fact() {
print "The sin of PI / 6 is ", sin(PI / 6)
}

func return_one() {return 1}
These are called with parentheses as in Python:

oc>say_fact ()

The sin of PI / 6 is 0.5
oc>result = return_one()
oc>print result

1

Note: HOC has no concept of namespaces. func and proc are either at the top
level or class/template methods; compare sin above with Python's math.sin.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 203

Didactic Presentations The NEURON Simulation Environment

func and proc: arguments

Values passed to HOC functions and procedures are accessed by 1-indexed
position and data type.

Numeric parameters are accessed via e.g. $1, $2, $3, ...

func add_things() {
return $1 + $2
}
print add_things(4, 7) // prints 11

String parameters are accessed via e.g. $s1, $s2, $s3, ...

proc hello() {
print "hello ", $si
}

Object parameters are accessed via e.g. %01, $02, $03, ...

Scalar pointers are accessed via e.g. $&1, $&2, $&3, ...

HOC — Python gotchas: variable scoping

In Python, setting a variable assigns to a local scope by default. HOC uses global
scope by default instead:

oc>a = 2

oc>proc do_a_thing() {
> oc>a = 3

> oc>print a

> oc>}
oc>do_a_thing ()
3
oc>print a
3
Page 204 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Local variables

Local variables in HOC are explicitly declared using local in the first line of a
proc or func:

oc>print a

3

oc>proc do_another_thing() {local a
> oc>a = 4

> oc>print a

> oc>}

oc>do_another_thing()

4

oc>print a

3

HOC — Python gotchas: syntactic flexibility

HOC is relatively forgiving about syntax.

A method that takes no arguments may be called with or without using the
parentheses:

oc>objref vec

oc>vec = new Vector(100)
oc>vec.size

100

oc>vec.size()

100

In Python, however, vec.size would be the method while vec.size () would be
the value returned by the method; i.e. these are two different things.

Thus: when porting code, be careful to add parentheses after all method
invocations.

The no-parentheses option does not apply to top-level proc or func, which require the parentheses.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 205

Didactic Presentations The NEURON Simulation Environment

HOC — Python gotchas: syntactic flexibility

In HOC a single = is valid in an if statement, but it does assignment. Like

Python, == must be used for comparison:
oc>a =1
oc>b = 2

oc>if (a = b) {

> oc>print "a equals b777"
> oc>}

a equals b777?

oc>a

2

This is occasionally useful but often indicates a bug.

HOC — Python gotchas: syntactic flexibility

In HOC an array of doubles may be declared as in:
double x[10]

Values may be read and set using [] like for Python lists or numpy arrays:
x[3] = 2

The Oth item may be accessed using [0] or by omitting the indexing entirely:

oc>x

0

oc>x[0] = 4
oc>x

4

This is true even for assignment; once a variable has been declared an array it is
always an array:

oc>x=5
oc>x[0]
5

Page 206 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Using HOC to control NEURON

Most NEURON functions and classes available by dropping the h.

objref vec, cvode
vec = new Vector(10)
cvode = new CVode()
cvode.active(1)

On very rare occasions, some names may be slightly different. The one you are

most likely to see is an IClamp delay, which in Python is .delay but in HOC is
.del:

objref ic
soma ic = new IClamp(0.5)
ic.del =1

The difference here is because del is a reserved keyword in Python.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 207

Didactic Presentations The NEURON Simulation Environment

Special syntax for sections

Creating sections with HOC:

create soma
create dend[10]

Dot notation may be used to access section properties:
soma.diam = soma.L = 20

But typically the currently accessed section is used instead, specified either with
the access statement; e.g.

access soma
diam = 20
L =20

or by prefixing a statement of block of statements with the section name, e.g.

soma {
diam = 20
L =20

}

The curly brace after the section name must occur on the same line as the section name.

Using the currently accessed section

Most of Python's Section methods (e.g. n3d, pt3dadd) appear to HOC as
functions that depend on the currently accessed section (they cannot be accessed
using dot notation):

soma my_n3d = n3d() // in Python: my_n3d = soma.n3d()

Where Python takes a segment, HOC typically takes a normalized x-value and
finds that in the currently accessed segment. e.g.

objref rvp
rvp = new RangeVarPlot("v")
soma rvp.begin(0) // in Python: rvp.begin(soma(0))

There is no direct HOC equivalent of Python's sec.psection(). There is a psection() that uses the currently accessed section, but that prints some
(less) data to the screen, while the Python version returns a data structure that can be examined by a script or by a human.

Page 208 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Connecting sections

connect is a keyword in HOC instead of a procedure or method. General form is
connect child, parent.

create soma, dendl, dend2

access soma

connect dend1(0), soma(l)

connect dend2(0), 1 // soma is implicit since current sec

Range variables

In Python, range variables are accessed through segments. There is no equivalent
of a Python segment object in HOC. Instead, the range variable comes first then
the normalized position within the section, where the section is either specified
through dot notation or taken as the currently accessed section. e.g.

print soma.v(0.5) // in Python: soma(0.5).v

soma print v(0.5)

Range variables that are part of a mechanism are accessed using the variable
name, an underscore, and then the mechanism name:

soma insert hh // in Python: soma.insert('hh')
print soma.m_hh(0.5) // in Python: soma(0.5).hh.m

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 209

Didactic Presentations The NEURON Simulation Environment

A single ampersand (&) before a variable name turns it into a pointer (this is
roughly equivalent to the _ref_ prefix for NEURON variables in Python):

create soma
access soma
objref v_trace
v_trace = new Vector()
v_trace.record(&v(0.5)) // in Python:
// v_trace.record(soma(0.5)._ref_v)

Question: how do we know that we're recording the soma’s membrane potential in
the HOC code?

Iterators

Iterators are like generators in Python, where the HOC iterator_statement is
equivalent to the Python yield.

iterator case() {local i
for i = 2, numarg() {
$&1 = $i
iterator_statement

+

}

x=0

for case (&x, 1,2,4,7,-25) {
print x

}

Coroutines are a related concept.

Page 210 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Looping over sections

To loop over all sections (changing the currently accessed section), use forall,
e.g.

forall {
print secname()

+
To do the same for a SectionList, use forsec, e.g.

forsec my_section_list {
print secname()

b

Regular expressions matching the names of desired sections may be specified
instead. e.g. to find all sections whose name begins with apical, use

forsec "apical" {
print secname()

}

Sections are not objects in HOC and so they cannot be stored in a List. A special SectionLast class is used instead.

Looping over segment locations

As HOC does not have a segment object, you cannot loop over segments, but you
can loop over the normalized segment locations via, e.g.

for (x, 0) {print x}
If nseg is 5, the above would print 0.1, 0.3, 0.5, 0.7, 0.9 (on separate lines.)

Unfortunately in many HOC codes, where people meant to do the above they
instead left out the ,0 and get all of the above values and the end points (0 and
1). In Python that would be equivalent to iterating over sec.allseg(), but that
is generally not useful and risks setting the end segments twice.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 211

Didactic Presentations The NEURON Simulation Environment

Templates

Templates are like classes in Python and are used to make arbitrary many copies
of a cell.

begintemplate RE32695
public nmda, ampa, gabaa, gabab, x, y, z ...
proc init () { local i,j
x=$1 y=$2 z=$3 // locations ndend = 59
create soma, dend[ndend]
soma {
gabaa = new Exp2Syn (0.5)

Every section defined inside of a template knows what cell it belongs to; there is
no need to explicitly specify the cell in HOC.

Looping over all sections inside of a template method loops over all of that cell’s
sections.

Example template courtesy of Bill Lytton.

HOC and Python interoperability via NEURON

Page 212 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

To load a HOC library from Python, use h.load file:
h.load_file('stdrun.hoc')

NEURON makes HOC variables, available to Python using the h. prefix as if they
were NEURON built-ins:

from neuron import h
h.finitialize(-65) # NEURON function; always works
h.continuerun(10) # defined in a HOC library;

would give an error here
h.load_file('stdrun.hoc')
h.continuerun(10) # ok here

HOC libraries for NEURON may thus be reused from Python without
changes.

Pass in a string to the h object to execute it as HOC:

>>> from neuron import h
>>> h('"!
proc hello() {
print "hello ", $si
}
. lll)
1
>>> h.hello('world')
hello world
0.0
>>>

In particular, strings, numbers, and objects may be passed between Python and
HOC.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 213

Didactic Presentations The NEURON Simulation Environment

HOC is not NEURON: data types

Despite the fact that both NEURON and HOC entities may be accessed through
the h object, when it comes to numeric types, NEURON may return int, bool, or
float; HOC always returns floats, even if it's just reporting what NEURON did:

>>> h(lll

1

lll)

func get_vec_size() {return $ol.size()}
func identity() {return $1}

>>> v = h.Vector([1, 2, 12])
>>> type(v.size())

<class

"int'>

>>> h.get_vec_size(v)

3.0

>>> type(v.contains(3))

<class

'bool'>

>>> h.identity(False)

0.0

Accessing Python from HOC

Python statements may be run from HOC using nrnpython, e.g.

nrnpython("import math")

Python functions may be called from HOC using a PythonObject, e.g.

objref pyobj

pyobj = new PythonObject ()

print "result is ", pyobj.math.acosh(2)
// prints: result is 1.3169579

Page 214

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 215

Didactic Presentations The NEURON Simulation Environment

Page 216 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NEURON + Threads

Simulations on multicor e desktops.

No (more) Free Lunch

1000000
-
100000
10000
1000
-
=
100
a o
10
= : ale /.r
e =
- -
1= + Clock Speed (MHz) [~
- -
= Transistors [000)
A | | | !
1971 1975 1979 1983 1987 1991 1995 1999 2003 2007

Intel CPU Introductions

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 217

Didactic Presentations The NEURON Simulation Environment

Thread style in NEURON

Join
run() {

while (t < tstop) {
multithread_job(step)

plot()
) } £ \ Z \

void* step(NrnThread* nt) {
.. nt=>id ...

}

We never use. . .
Condition Wait

multithread_job(run)

runr(]l_}lrnThread* nt) {
t <tst
whil %((nt) stop) { S \
barrier()
if (nt—>id == 0) { plot() }
barrier()

1 Reminiscent of MPI

Fixed step: t —>t + dt

S T R B U G
setup triang reduce bksub update cond
solve gates

. 1 1 J |
T B U G

S
I S N
I N .
NN N .
S TBU G

E—-.Jh--.-"—--dh--.-i

=T =

S T R BU G

Global var dt Y =0 dy7dy
27 ||Vector operatio

Page 218 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Relative thread performance
1,2, 4 processors

Normalized runtime (1 thread)

- Cache Efficipnt](1 Thread)
06 L
- - - 2 proc ideal
04 L
- - - 4 proc ideal
02 L
0.0 L
// { d‘
"P:%, NN X 2
9 4;6& 73 //_% (-4 ’ 94%
Model Author i %
states 3K Variable time step used
Ideal cache efficiency
CPU1
cache line
8 or 16 doubles
CPU 2)
Runtime (s)

Cache Efficienc
Threads Off On

1 492 0.45

_ 2 1.14 0.23

10000 passive compartments
4 core 3GHz x86_64 4 0.29 0.12
8 0.23 0.09

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 219

Didactic Presentations The NEURON Simulation Environment

False cache line sharing

B
CPU 1
cache line
8 or 16 doubles
CPU 2
nthread separation runtime
(bytes) (s)
1 X 04
for ithread = 1, nthread { 4 4 4.5
for i=1, 100million { alithread] +=1 } 4 32 5.0
1 4 64 0.4
8 4 15.0
8 64 0.7

Lazarewicz 2002, CA3 Pyramidal Neuron

RunControl
Graph[0] x-14 : 154 y -92:52 Close Hide
Close Hide | Init (mv) 2|1 [55 2l
\%
45 E] Init & Run
5?t son p—
V(. Stap

n Continue til (ms) 41| _{ [5 E|
|) : ‘ Continue for (ms) Hlj 1
10 90 140 I =l

SingIeStepI
Time[m -
t(ms) §140
40 [
/ Tstop (ms)lf [120 |
dt (ms) 2.335 =l

E—

0.05

Points plotted/ms

Scrn update invl (s)

Real Time (s)§ 35.4

Page 220 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

NEURON Main Menu

ParallelComputeTool[0]

77 useful processors
Totalmodel complexity: 28021
1 pieces
Loadimbalance:0.0%

hread Parallel
CacheEfficient
Use busy waiting
Multisplit

Didactic Presentations

ParallelComputeTool[0]

4 useful processors
Total model complexity: 28021
1 pieces
Loadimbalance:0.0%

||| CacheEfficient
|| Use busy waiting
| Multisplit

oc>nthread walltime (count to 1e8 on each thread)
1 0.0500002

2 0.0599999
4 0.0599999
8 0.14

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

ParallelCompute Tool[0]

4 useful processors
Total model complexity: 28021
1 pieces

Loadimbalance:300.0%

hread Parallel
Cache Efficient
Use busy waiting
Multisplit

Page 221

Didactic Presentations The NEURON Simulation Environment

NEURON Main Menu

4 useful processors
Totalmodel complexity: 28044
24 pieces

Loadimbalance: 1.9%

hread Parallel
CacheEfficient
Use busy waiting
'k Multisplit

RunControl
| Graph[0] x-14 : 154 y -92 : 52 |
v [mV]
40 V(. 553t son
\ A n | |
0
10 90 140
Time[mr
-40]
-80 —

instead of 35.4s

Page 222 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

$ mkthreadsafe
NEURON {
SUFFIX CAIM95
USEION ca READ cai,cao WRITE ica
RANGE gbar,ica
GLOBAL minf,tau
}
Translating CAIM95.mod into CAIM95.c
Notice: Assignment to the GLOBAL variable, "minf", is not thread
Notice: Assignment to the GLOBAL variable, "tau”, is not thread s
Force THREADSAFE? [y][n]: n

DERIVATIVE state {
rate(v)
m’ = (minf — m)/tau

}

PROCEDURE rate(v (mV))
LOCAL a
a =alp(v)
tau = 1/(tfa*(a + bet(v
minf = tfa*a*tau

}

Force THREADSAFE? [y][n]: n
y

NEURON {
THREADSAFE
SUFFIX CAIM95
USEION ca READ cai,cao WRITE
RANGE gbar,ica
GLOBAL minf,tau

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 223

Didactic Presentations The NEURON Simulation Environment

$ mkthreadsafe
NEURON {
POINT_PROCESS GABAa
POINTER pre
}
VERBATIM
return O;

ENDVERBATIM
Translating gabaa.mod into gabaa.c
Notice: Use of POINTER is not thread safe.
Notice: VERBATIM blocks are not thread safe
Notice: Assignment to the GLOBAL variable, "Rtau”, is not thread
Notice: Assignment to the GLOBAL variable, "Rinf", is not thread ¢
Force THREADSAFE? [y][n]: n

$ mkthreadsafe
NEURON {
SUFFIX Kv
USEION k READ ek WRITE ik
RANGE n, gk, gbar
RANGE ninf, ntau
GLOBAL Ra, Rb
GLOBAL q10, temp, tadj, vmin, vmax
}
Translating kv.mod into kv.c
Notice: This mechanism cannot be used with CVODE
Notice: Assignment to the GLOBAL variable, "tadj", is not thread safe
Force THREADSAFE? [y][n]: n

Page 224 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NEURON {
GLOBAL q10, temp, tadj, vmin, vimax

INITIAL {
trates(v)
n = ninf

}

BREAKPOINT {

SOLVE states

gk = tadj*gbar*n

ik = (le-4) * gk * (v — ek)
}

PROCEDURE trates(v) {
TABLE ninf, nexp
tadj = q10”((celsius — temp)/10)

NEURON { THREADSAFE
GLOBAL q10, temp, tadj, vimin, viax

INITIAL {
trates(v)
n = ninf

}

BREAKPOINT {

SOLVE states

gk = tadj*gbar*n

ik = (le-4) * gk * (v — ek)
¥

PROCEDURE trates(v) {
TABLE ninf, nexp
tadj = q10”((celsius — temp)/10)

tadj = q10”((celsius — temp)/10)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 225

Didactic Presentations The NEURON Simulation Environment

... a case often seen in ca accumulation models

NEURON {
GLOBAL vol, Buffer0

INITIAL {

if (coord_done == 0) {
coord_done =1
coord()

}

" vol[0] = 0
FROM i=0 TO NANN-2 {
vol[i] = volli] + PI* (r—dr2/2) *2*dr2

vol[i+1] = PI* (r+dr2/2)*2*dr2

NEURON {
GLOBAL vol, Buffer0
THREADSAFE vol

INITIAL {
MUTEXLOCK
if (coord_done == 0) {
coord_done =1
coord()

1
MUTEXUNLOCK

"~ vol[0] = 0
FROM i=0 TO NANN-2 {
vol[i] = vol[i] + PI* (r—dr2/2) *2*dr2

vol[i+1] = PI* (r+dr2/2)*2*dr2

Page 226 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

|f thread results differ,
a good way to diagnose the
causeisto use prcellstate.hoc

$ nrngui mosinit.hoc

load_file(" prcellstate.noc")

Il serial model
finitialize(—70)
prcellall(0) // constructs csO.!

/[switch to 4 threads
finitialize(=70)
prcellall(1) // constructs csl.!

diff cs*|more
notice differences in ik and ica
and in particular

595,605c595,605
<0594 0.29053584721744774 gk_km(0.0454545)
<0595 0.29053584721744774 gk_km(0.136364)

> 0594 0 gk_km(0.0454545)
> 0595 0 gk_km(0.136364)

672,682c672,682
<0671 7.8321478840514193e-12 gca_sca(0.0454545)
<0672 7.8321478840514193e-12 gca_sca(0.136364)

> (0671 0 gca_sca(0.0454545)
> 06720 gca_sca(0.136364)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 227

Didactic Presentations The NEURON Simulation Environment

Page 228 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Case study: building a ring network

Physical system: neocortex
Conceptual model: postulated "reverberating loop"

Computational model: ball and stick model cells
connected by spike-triggered
excitatory synaptic transmission

19 0 1

Ring network

hoc users: see Hines & Carnevale, J Neurosci Methods
169:425-55, 2008, PMID 17997162,
https://modeldb.yale.edu/96444

Python users: work through NEURON + Python tutorial
https://neuron.yale.edu/neuron/static/docs
/neuronpython/index.html

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 229

Didactic Presentations The NEURON Simulation Environment

Page 230 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Building, Running, and Visualizing

Parallel NEURON Models

Robert A. McDougal

Yale School of Medicine

Why use parallel computation?

Four reasons:
@ Get the results for a simulation in less real time.
@ Run a larger simulation in the same amount of time.
@ Run more simulations (e.g. parameter sweeps).

@ Run models needing more memory than is available on one machine.

What are the downsides?
Parallel models introduce:

| N

@ Greater programming complexity.

@ New kinds of bugs.

You have to decide if the time spent parallelizing your model can be recovered.

Other considerations

| A

The 16384 core EPFL IBM BlueGene/P can theoretically do as many calculations
in 1 hour at 850 MHz as a 3 GHz desktop computer can do in 6 months.

Building a parallelizable model typically requires little extra effort from building a
serial model; converting a serial model to a parallel model is often more difficult.

V.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 231

Didactic Presentations The NEURON Simulation Environment

Three main classes of parallel problems

Parameter sweeps

Running the same (typically fast) simulation 1000s of times with different
parameters is an example of an embarrassingly parallel problem. NEURON
supports this natively with bulletin boards; Calin-Jageman and Katz (2006)
developed a screen saver solution.

Distributing networks across processors

| A

Cells can communicate by
@ logical spike events with significant axonal, synaptic delay.
@ postsynaptic conductance depending continuously on presynaptic voltage.

@ gap junctions.

Distributing single cells across processors

The multisplit method distributes portions of the tree cable equation across
different machines.

| A

A\

A parallel model can fall in 1, 2, or 3 of these classes.

Some parallel philosophy

@ A network of neurons is composed of many individual neurons of potentially
many cell types. As much as possible, design and debug each cell type
separately before building the network.

@ A simulation should give the same results regardless of the number of
processors used to run it.

@ When possible, parameterize your network so you can run a small test first.

v

Page 232 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

For parallel networks: cell classes should have a gid

In addition, it will be convenient to specify morphology in a dedicated method,
and add a __repr__ method to identify the object.

from neuron import h, gui
h.load_file('import3d.hoc')

class Pyramidal:

def __init__(self, gid):
self._gid = gid
self._setup_morphology()

def _setup_morphology(self):
cell = h.Import3d_SWC_read()
cell.input('c91662.swc')
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

def __repr__(self):

return 'Pyramidall[/d]' % self._gid

Here, the gid should be a globally unique identifying integer. We do not use class
variables to generate the integer automatically because: (1) the numbers should
not repeat between different processors, and (2) we may wish to recreate a single
specific cell instead of the entire network.

Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 233

Didactic Presentations The NEURON Simulation Environment

Working with multiple cells

To can create a method to reposition a cell and call it from __init__:

class Pyramidal:
def _shift(self, x, y, z):
for sec in self.all:
n = sec.n3d()
xs [sec.x3d(i) for i in range(n)]

def __init__(self, gid, x, y, 2):
self._gid = gid
self._setup_morphology()
self._shift(x, y, z)

ys = [sec.y3d(i) for i in range(n)] def _setup_morphology(self):
zs = [sec.z3d(i) for i in range(n)] 11 - i_l P t3dggwc a()
ds = [sec.diam3d(i) for i in range(n)] ce.- = .. Mportsd_shb_rea

cell.input('c91662.swc')
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

for i, (a, b, ¢, d) in enumerate(zip(xs, ys, zs, ds)):
sec.pt3dchange(i, a + x, b +y, ¢ + z, d)

Now if we create ten, while specifying offsets,
mypyrs = [Pyramidal(i, i * 100, 0, 0) for i in range(10)]
The PlotShape will show all the cells separately:

Does position matter?

Sometimes.

Position matters with:
@ Connections based on proximity of axon to dendrite.
@ Connections based on cell-to-cell proximity.
e Extracellular diffusion.
°

Communicating about your model to other humans.

Page 234 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Discretize, declare channels, set parameters

class Pyramidal:
def __init__(self, gid):

self._gid = gid Remember: you

self._setup_morphology () typically want to
self._discretize()
self._add_channels() have an odd number
def _setup_morphology(self): of segments so there
cell = h.Import3d_SWC_read() .
cell.input('c91662.swc') is a node at the
i3d = h.Import3d_GUI(cell, 0) middle.
i3d.instantiate(self)
def __repr__(self): .
return 'p[%d]' % self._gid When refining a
def _discretize(self, max_seg_length=20): H
for sec in self.all: mesh, anItlply by
sec.nseg = 1 + 2 * int(sec.L / max_seg_length) an odd number to

def _add_channels(self):
for sec in self.soma:
sec.insert('hh')
for sec in self.all:
sec.insert('pas')
for seg in sec:
seg.pas.g = 0.001

preserve old nodes.

for sec in self.all:
sec.nseg *= 3

An alternative discretization strategy is to use the d_lambda rule:
def _discretize(self):
h.load_file('stdlib.hoc')
for sec in self.all:
sec.nseg = int((sec.L/(0.1%h.lambda_f (100)) + .9)/2.)%2 + 1

Examine for errors: Tools — ModelView

N ModelView[0]

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 235

Didactic Presentations The NEURON Simulation Environment

New way to run via h.ParallelContext ()

pc = h.ParallelContext()
pc.set_maxstep(10)
h.v_init = -69
h.stdinit()
pc.psolve(10)

from neuron import h
from PyNeuronToolbox import morphology
from matplotlib import pyplot

h.load_file('stdrun.hoc')
pyplot.plot(t, v)

pyplot.xlabel('t (ms)')
pyplot.ylabel('v (mV)"')
pyplot.show()

class Pyramidal defined as before
myPyramidal = Pyramidal(0)

postsyn = h.ExpSyn(myPyramidal.dend[0] (0.5))
postsyn.e = O # reversal potential

stim = h.NetStim() . P
stim.number = 1 |
stim.start = 3 ’

ncstim = h.NetCon(stim, postsyn) L
ncstim.delay = 1 ’
ncstim.weight[0] = 1 v |
t = h.Vector().record(h._ref_t) ’

v

h.Vector() .record (myPyramidal.soma[0] (0.5)._ref_v)

Building synapses

PreCell PostCell

PostSyn

Page 236 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Configuring the presynaptic connection site

PreCell

Create cell only where the gid exists: Associate gid with spike source:
if pc.gid_exists(7): nc = h.NetCon(PreSyn, None, sec=presec)
PreCell = Cell() pc.cell(7, nc)

PreSyn here is a pointer, e.g. PreCell.soma(0.5)..ref_v

Configuring the postsynaptic connection site

PostCell

Create NetCon on node where target exists:

nc = pc.gid_connect(7, PostSyn)

PostSyn here is a Point Process, e.g. an ExpSyn.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 237

Didactic Presentations The NEURON Simulation Environment

Spike exchange method

PreCell PostCell

PostSyn

Spike exchange method

PreCell PostCell

PostSyn

gid 7
t 2.875

Page 238 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1
gid 7 N |gid 7
t 2.8ys|MPLAllgather 510 5875
gid —— Sfga —
= e —
v . g 0
1 — 1 8

Spike exchange method

PreCell PostCell

PostSyn

n 1 n 1
gid 7 o~ |gid 7
t 2.875 alt 2.875
gid vlgid ——
t — t . t —
v . 0
1 | — 1 8

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 239

Didactic Presentations The NEURON Simulation Environment

Exploit transmission delays: using pc.set maxstep

Run using the idiom:

pc.set_maxstep(10)
h.stdinit()
pc.psolve(tstop)

NEURON will pick an event exchange interval equal to the smaller of all the
NetCon delays and of the argument to pc.set_maxstep. In general, larger
intervals are better because they reduce communication overhead.

| spikes here | are delivered here

min delay

exchange exchange

pc.set_maxstep must be called on each node; it uses MPI_Allreduce to
determine the minimum delay.

Adding a presynaptic site

class Pyramidal:

def

def

__init__(self, gid):

self._gid = gid
self._setup_morphology()
self._discretize()
self._add_channels()
self._register_netcon()
_register_netcon(self):

self.nc = h.NetCon(self.soma[0] (0.5)._ref_v, None, sec=self.somal[0])
pc = h.ParallelContext ()
pc.set_gid2node(self._gid, pc.id())
pc.cell(self._gid, self.nc)

the rest of the class stays unchanged

For most models, the delay due to axon propagation can be incorporated into a
synaptic delay and thus it suffices to only make one connection point at the soma
or axon hillock.

pc.set_gid2node must be called before pc.cell.

Page 240

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Building a two cell network

from neuron.units import ms, mV

class Network:
def __init__(self):

self.cells = [Pyramidal(i) for i in range(2)]

setup an exciteable ExpSyn on each cell’s dendrites

self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]

for syn in self.syns:
syn.e = 0 * mV

connect cell O to cell 1

pc = h.ParallelContext()

pre = 0

post =1

self.nc = pc.gid_connect(pre, self.syns[post])

self.nc.delay = 1 * ms
self.nc.weight[0] = 1

n = Network()

Note: we use for loops and list comprehensions even when there is only two cells
to avoid repeating ourselves (the DRY-principle) and to allow future
generalization.

Running the two cell network

drive the Oth cell

stim = h.NetStim()

stim.number = 1

stim.start = 3 * ms

ncstim = h.NetCon(stim, n.syns[0])
ncstim.delay = 1 * ms
ncstim.weight[0] = 1

t
v

h.Vector() .record(h._ref_t)
[h.Vector() .record(cell.soma[0] (0.
for cell in n.cells]

pc = h.ParallelContext()
pc.set_maxstep(10 * ms)
h.v_init = -69 *x mV
h.stdinit ()

pc.psolve(10 * ms)

for myv in v:

pyplot.plot(t / ms, myv / mV)
pyplot.xlabel('t (ms)')
pyplot.ylabel('v (mV)')
pyplot.show()

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

5)._ref_v)

40

20

—60}

—80]
0

Page 241

Didactic Presentations The NEURON Simulation Environment

Exercise: Generalizing to n cells in a ring network

How can we generalize to a ring network with n cells?

0—>1-—>2—>3—>—>n-1

A |

Hint: As i increases, i % ncounts: 0,1,2,...,n — 1,0, 1, ...

Solution: Generalizing to n cells in a ring network (100ms)

class Network:
def __init__(self, num):
self.cells = [Pyramidal(i) for i in range(num)]
setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0 * mV
connect cell i to cell (i + 1) % num
pc = h.ParallelContext ()
self.ncs = []
for i in range(num):
nc = pc.gid_connect(i, self.syns[(i + 1) % num])
nc.delay = 1 * ms
nc.weight[0] = 1
self .ncs.append(nc)

n = Network(20)

Page 242 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Storing spike times

With 20 cells, it is hard to distinguish the cells when simultaneously plotting the
membrane potentials. Let's just store the spike times.

We begin by modifying Pyramidal. _register_netcon:

def _register_netcon(self):
self.nc = h.NetCon(self.soma[0] (0.5)._ref_v, None, sec=self.somal[0])
pc = h.ParallelContext ()
pc.set_gid2node(self._gid, pc.id())
pc.cell(self._gid, self.nc)
self.spike_times = h.Vector()
self .nc.record(self.spike_times)

When the simulation is over, we can print out the spike times:

for i, cell in enumerate(n.cells):
print('%d: %r' % (i, list(cell.spike_times)))

Beginning of output:

[4.600000000100032, 36.62500000009977, 69.12500000010715]
[6.200000000100054, 38.25000000010014, 70.75000000010752]
[7.800000000100077, 39.875000000100506, 72.37500000010789]
[9.4000000001, 41.500000000100876, 74.00000000010826]

W N = O

Storing spike times: JSON

To store spike times in JSON, we can use the following code:
import json
with open('output.json', 'w') as f:
f.write(json.dumps({i: list(cell.spike_times) for i, cell in enumerate(n.cells)},
indent=4))

This creates a file output. json which begins:
IIOII: [
4.600000000100032,
36.62500000009977,
69.12500000010715
] s
nqn. [
6.200000000100054,
38.25000000010014,
70.75000000010752
] s
nomn. [
7.800000000100077,
39.875000000100506,
72.37500000010789

JSON is a standard format for data interchange. Libraries are available for most programming languages.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 243

Didactic Presentations The NEURON Simulation Environment

Raster plots

]

jic | |

13 |

for i, cell in enumerate(n.cells):
pyplot.vlines(cell.spike_times, i + 0.5, i + 1.5)
pyplot.show()

Simple load-balancing strategy: round-robin.

Processor 1 Processor 2

Processor 3 Processor 4

Page 244 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Simple load-balancing strategy: round-robin.

CPU 3 CPU 4

CPU O

pc.id pc.id pc.id
pc.nhost 5 oo pc.nhost 5 pc.nhost 5
ncell 14 ncell 14 ncell 14
gid gid gid
0 3 4
5 8 9
10 13

An efficient way to distribute, especially if all cells similar:

for gid in range(pc.id(), ncell, pc.nhost()):

pc.set_gid2node(gid, pc.id())

(Note: the body is executed at most [ncell/nhost]| times, not ncell.)

Advanced load-balancing: balance work not number of cells

Strategy:
@ Distribute cells round-robin to all processors, instantiate them.

@ Compute an estimate of the computational complexity:

def complexity(self):
h.load_file('loadbal.hoc')

1b = h.LoadBalance()
return lb.cell_complexity(sec=self.all[0])

@ Destroy the cells, send the gid-complexity data to node 0.
(On node 0): distribute gids such that the next gid goes to the node with the

least amount of complexity.
@ Send the gids to the nodes; instantiate the cells.

For a more accurate (but computationally more intensive) estimate of complexity, use |b.ExperimentalMechComplex and Ib.read_complex

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 245

Didactic Presentations The NEURON Simulation Environment

Page 246

Parallelizing our ring network with round-robin

Very few changes are necessary.

MPI must be initialized before we can use it:

h.nrompi_init()

The Network class only instantiates gids on the current processor.

class Network:
def __init__(self, num):
pc = h.ParallelContext ()
mygids = list(range(pc.id(), num, pc.nhost()))
self.cells = [Pyramidal(i) for i in mygids]
setup an exciteable ExpSyn on each cell’s dendrites
self.syns = [h.ExpSyn(cell.dend[0](0.5)) for cell in self.cells]
for syn in self.syns:
syn.e = 0 * mV
connect cell (i - 1) % num to cell i
self.ncs = []
for i, syn in zip(mygids, self.syns):
nc = pc.gid_connect((i - 1) % num, syn)
nc.delay = 1 * ms
nc.weight[0] = 1
self.ncs.append(nc)

Parallelizing our ring network

We must modify the initial netstim to ensure it only attaches to gid 0 not to the
Oth cell in each process.

drive the Oth cell
if pc.gid_exists(0):
stim = h.NetStim()
stim.number = 1
stim.start = 3
ncstim = h.NetCon(stim, n.syns[0])
ncstim.delay = 1
ncstim.weight[0] = 1

Finally, we modify the write to do it on a per-processor basis:

with open('outputid.json' % pc.id(), 'w') as f:
f.write(json.dumps({cell._gid: list(cell.spike_times) for cell in n.cells},
indent=4))

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment

Didactic Presentations

Optional: use pc.py_alltoall to send all spikes to node O

local_data
all_data

if pc.id()
only
import

combined_data

do output from node 0O

json
18

for node_data in all_data:
combined_data.update (node_data)

with open('output.json', 'w') as f:
f.write(json.dumps(combined data, indent=4))

Performance:

MPI scaling

{cell._gid: list(cell.spike_times) for cell in n.cells}
pc.py-alltoall([local_data] + [None] * (pc.

nhost() - 1))

Santhakumar et al. (2005)

g & 8
g8 8 8

cell number

3
H

100

500

—_ A) extended (160,000 calls) Bush et al (1999) model
> Beowulf 32-bit on the EPFL IBM BlueGene
Beowulf 64-bit
- CINECA IBM Linux cluster 160x10°
$ EPFL IBM Blue Gene
g 140x10°
£
O 120x10°
o .
& S 8 om0
0 2 £
0 50 100 150 200 250 1 2 4 8 16 32 64 128 256 512 2 80x10°
time (ms) number of processors. =
D 60x10°
Davison et al., (2003) =
A by 40x10°
1600 |
ooo 20x10°
400
200
100
50
2 B) time (ms)
10 100
5
1 2 4 8 16 32 64 128 256 512 50 -
number of processors
_ 251
o
o
A
g
E 10
® 10000 cells
A 20000 cells
5{ = 40000 cells
+ 80000 cells
v 160000 cells
2
PR ot ot o 3N B B &0 O o
VSR s her 4 3 4 & T .92 lea i zeeisiz 50 126 250 500 1000 2000 4000 8000

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A.

number of processors
time (ms)

McDougal, all rights reserved

number of processors

Page 247

Didactic Presentations

The NEURON Simulation Environment

Performance: Spike exchange strategies

MPI_ISend - Two Phase, Two Subinterval
Allgather

DCMF_Multicast = Two Phase, Two Subinterval
Record-Replay - One Subinterval

Computation Time (includes queue)

+0oep>

2M Cells
1k Conn/cell

Runtime (sec)
©
T
Runtime (sec)
©

Artificial Spiking Net
Blue Gene/P
Argonne National Lab

Strong Scaling
32 —

1/4M Cells
RS 10k Conn/cell
AN
- N
AN

05 | 05 N3
8 6 32 64 18 8 16 32 64 128
K processors K processors
Weak Scaling

30 — 30 ~
o o
Q Q
8 A/A———A———A_A 3
() (o}
£2 £20 |
S 1k Conn/cell 5 10k Conn/cell
14 o

10 10

2M cells 32M cells 1/4M cells 4M cells
0 | | | | 0 | | | | |

8 16 32 64 128
K processors

8 16 32 64 128
K processors

Performance Tip

Tip: For network models, use a fixed step solver and not a variable step solver.

Page 248

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Suppose we now realize we want to know the time series of the m variable in the
center of the soma of cell 5. We only stored spike times. Do we have to modify
our code to store that variable and rerun the entire simulation?

Tip: Store synaptic events; recreate single cells as needed

initial conditions
+ =3 neuron dynamics
synaptic events

“ - % % Temwetwr mr ploe - =
< %z ‘2 EZ R N
7 T ravanant feis - monr sz sze
|
/
SN
.‘"
-,
"
N
SR R LI B e -‘-
[* e e e
07,03z Ja0d0
L4
LT

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 249

Didactic Presentations The NEURON Simulation Environment

Using spike data to recreate a variable of interest

We will need vecevent.mod. If you have NEURON, this file should be on your
computer somewhere. Alternatively, you can download it from:

https://github.com /neuronsimulator/nrn/blob/master/
share/examples/nrniv/netcon /vecevent.mod

Using spike data to recreate a variable of interest

import json

from neuron import h

from neuron.units import ms, mV

from PyNeuronToolbox import morphology
from matplotlib import pyplot
h.load_file('stdrun.hoc')

num_cells = 20

class Pyramidal as before
read spike times

with open('output.json') as f:
spike_times_by_cell = json.load(f)

(continued)

Page 250 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Using spike data to recreate a variable of interest

def get_m(gid):
p = Pyramidal(gid)
recreate synaptic inputs (here, only one; you may have multiple)
precell = (gid - 1) % num_cells
vs = h.VecStim()
spike_vec = h.Vector(spike_times_by_cell[str(precell)])
vs.play(spike_vec)
syn = h.ExpSyn(p.dend[0](0.5))
nc = h.NetCon(vs, syn)
nc.delay = 1 * ms
nc.weight[0] = 1 " i T [

setup recording
t = h.Vector() .record(h._ref_t) el
m = h.Vector() .record(p.soma[0] (0.5)._ref_m_hh) ’

pc = h.ParallelContext() “ '

do run
pc.set_maxstep(10 * ms)
h.v_init = -69 * mV £
h.stdinit ()
pc.psolve(100 * ms) .
return t, m
S— —
t, m = get_m(5) B D Y - ¢ 0 i

pyplot.plot(t, m)
pyplot.show()

Multisplit

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 251

Didactic Presentations The NEURON Simulation Environment

Improve load balancing with multisplit

200

16 Pieces
4 CPU 150

#comp

100

50

Piece

401 395 400 404

w- g g = :
#comp
|
™ |
|
300 |-
Time (s) 200 |-
CPU Computation Exchange]
0 13.82 0.56 Runtime(s)
1 13.35 1.03 16 pieces, 1 cpu 55.0 oo |
holecell, 1
2 13.47 0.90 whoeeell 1 epu 562 L
16 pieces, 4 cpu 14.4 o 1 > 3 4
3 13.56 0.82 CcPU

Multisplit algorithm described in Hines et al 2008. DOI: 10.1007/s10827-008-0087-5

Multisplit: methods

d a
a
d a d a d a
b d a a
b da d a
b d a b d a
bld|a b d a| |b [d] a
b da b d a
b da b d a
b d a b d a b d
b|d|a b d a
b da b d
b d a b d
b|d|a b d
b a b d
b da b d
b da
b d

Page 252 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Using multisplit (threads)

When not using MPI, enabling thread-based multisplit is as easy as clicking a
checkbox:

Close Hide Close Hide
[

4 useful processors

Total model complexity: 426
227 pieces

Load imbalance: 2.3%

threads
hread Parallel
Cache Efficient
lUse busy waiting
ultisplit
Refresh

Using multisplit (MPI)

For process-based multisplit (with MPI), use pc.multisplit to declare split
nodes:

pc.multisplit(x, subtreeid, sec=sec)

After all split nodes are declared, every process must execute:

pc.multisplit()

If created, destroy any parts of the cell that do not belong on the processor.

Rules:
@ Each subtree can have at most two split nodes.

@ Does not support variable step, linear mechanisms, extracellular, or
reaction-diffusion.

@ h.distance cannot compute path distances that cross a split node.

Tip: For load balancing, it is sometimes convenient to split cells into more pieces
than processes.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 253

Didactic Presentations The NEURON Simulation Environment

Example: Migliore et al 2014

Migliore et al 2014 used multisplit to improve load balancing on a model of the
olfactory bulb.

http://modeldb.yale.edu/151681

See, in particular, the file multisplit_distrib.py.

Gap Junctions

Page 254 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Continuous voltage exchange

gl.vgap

HalfGap.mod
NEURON { ASSIGNED {

POINT PROCESS HalfGap v (millivolt)

ELECTRODE CURRENT 1 vgap (millivolt)

RANGE r, i, vgap i (nanoamp)
} }
PARAMETER { r = 1e9 (megohm) } CURRENT { 1 = (vgap - v) / r }

pc.source_var to declare source sgid

pc.source_var(sl(x1)._ref v, 1)
Sl(Xl).V <> sglld

sgzid <> S2(x2).v
pc.source_var(s2(x2)._ref_v, 2)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 255

Didactic Presentations The NEURON Simulation Environment

pc.target var to declare target connection

pc.source_var(sl(x1)._ref v, 1)
id
s1(x1).v <> *9 pc.target_var(g2._ref_vgap, 1)

g2.vgap

gl.vgap
pc.target_var(gl._ref_vgap, 2) 592‘0' <> s2(x2).v

pc.source_var(s2(x2)._ref_v, 2)

Performance: Traub model

Pittsburgh Supercomputing Center

Bigben Cray XT3
2068 2.4 GHz Opteron Processors
1024 —
Traub et. al. (2005) J. Neurophysiol 93: 2194
256 |— A single column thalamocortical network model
exhibiting gamma oscillations, sleep spindles and
epileptogenic bursts.
® Runtime X
64 ~~ lIdeal runtime -
) = Spike exchange time
S
\I Mean, max, min Computation time ~
16 |— . . . ® 6
+ Mean, max, min variable transfer time s
3560 cells 14 types
41 3500 gap junctions
5,596,810 equations
73,465 spikes
1,122,520 connections
1 - 19,844,187 delivered
| | | | | J
25 50 100 200 400 800
#CPU

Page 256 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Performance: Traub model with multisplit

1024 ~ 80
60
B #Cells
356 Cells ®
256 | \ Y
S B 3000 4000 5000
Complexity
64 L
e Runtime 4058 pieces
o Computation time N fg';
16 - Whole cell balance N 139
Multisplit, No Gap Junctions ‘1> '
— m Multisplit, With Gap Junctions
4 L 1 | | | | | |
32 128 512 2048
CPUs

Finally: Subworlds

Use pc.subworlds to combine parallel simulation with parallel bulletin-board
based parameter search.

from neuron import h
h.nrompi_init()

pc = h.ParallelContext ()
pc . subworlds(2)

from model import runmodel
pc . runworker ()

for ncell in range(5, 10):
pc.submit (runmodel, ncell, 1, 100)

while (pc.working()):
print(pc.pyret())

pc.done()
h.quit()

Note: Unless memory on a single node is a limiting factor, you will likely want
either 1 subworld (everything) or pc.nhost () subworlds. In the first case, there is
no need to use subworlds since simulations are run one at a time; in the other
extreme, there is also no need since each simulation runs on a single processor.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 257

Didactic Presentations The NEURON Simulation Environment

Page 258 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Neuroscience Gateway:
Enabling Supercomputing
for
Neuroscience Research and Education

Amitava Majumdar!, Subhashini Sivagnanam1i,

Ted Carnevale?, Kenneth Yoshimoto?
lucsD, San Diego, CA; 2Yale University, New Haven, CT

Neuroscience's Growing Need for
High Performance Computing (HPC)

* Increased size and complexity of computational models

* Wider use of optimization and parameter space
exploration

* Projects that require running many simulations, e.g.
to examine roles of noise or stochasticity, determine
parameter sensitivity, evaluate learning rules

* Expanding use of experimental methods that generate
massive amounts of data requiring computationally
intensive analysis

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 259

Didactic Presentations The NEURON Simulation Environment

Barriers to using HPC

* Writing peer-reviewed proposals for computer time.

* Understanding HPC machines, policies, complex
OS/software.

* Installing and benchmarking complex tools on HPC
resources.

* Understanding and managing multiple remote
authentication systems.

* Dealing with data transfer, management, and storage
Issues.

Few neuroscientists could access HPC before the
Neuroscience Gateway was developed. Projects may
have started small by design, but entry barriers forced
many to stay small.

The Neuroscience Gateway (NSG)

NSG https://www.nsgportal.org provides free, simple,
secure access to XSEDE's HPC resources. NSG's portal
and programmatic service make it easy to use
neuroscience-related software and tools.

Partial list of tools currently available at NSG:

Brian NetPyNE EEGLAB Python
CARLsim NEURON FREESURFER MATLAB
DynaSim PyNN FSL Octave
GENESIS BluePyOpt TensorFlow R

NEST Virtual Brain Empirical Pipeline

New tools are added on request.

Page 260 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

' ! m NSG user interface - Browser HPC

Programmatic access interface resource 1
-

:%—'
A A
\

\

. N
- NSG ¢ HPC
D resource 2
It ModelDB g 2
S o
=5
wv
> ° = RESTHul HPG
- 2E —> web resource3
o _ - 3 services
> T € le >
Dpel O 8
GUI Access

NSG Portal's simple, easy to use web interface provides

* access to XSEDE HPC resources, HPC software
stack.

* access to architectures such as GPUs, KNL.

 support for "bundling” of jobs, i.e. multiple single core
executions in parallel (e.g. for embarrassingly parallel
tasks, such as parameter sweep studies).

 support for custom workflows, e.g. Virtual Brain
pipeline.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 261

Didactic Presentations The NEURON Simulation Environment

Programmatic Access

A RESTful APl (NSG-R) offers most portal functionality
* submit, cancel, and delete jobs

* list and check status of submitted jobs

* list and download results

* list working directory

Example:

curl -u username:$PASSWORD -H cipres-
appkey:$KEY $URL/job/username -F
to01=NEURON74_TG -F
input.infile_=@./JonesEtAl2009_r31.zip
-F vparam.number_nodes_=2

Getting an Account

An account is needed to use NSG directly through its
portal or RESTful interface.

* Apply at https://www.nsgportal.org/gest/reg.php

* Contact and brief technical information required for
user verification.

* Accounts are usually set up within 24 hours.

* Users are added to the NSG email list, which gets
occasional news posts.

Page 262 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Do you even need an account?

OpenSourceBrain, BluePyOpt, and some other
neuroscience community projects have their own
"umbrella accounts" that cover their users.

Their users can run jobs on NSG without having to
register with NSG.

Users of downloadable software packages that have
integrated NSG access, such as SimTracker, don't
need individual accounts.

Growth of NSG Usage

17 2018 (March)

12000000

10000000

8000000

6000000

CORE HOURS

4000000

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 263

Didactic Presentations The NEURON Simulation Environment

Evolution of NSG

Initially implemented to provide streamlined access
to HPC resources for neuroscientists dealing with
large scale modeling projects.

Subsequently expanded to meet other HPC needs
of the broader neuroscience community, especially
cognitive and experimental neuroscientists faced
with computationally challenging tasks.

Evolution of NSG continued

Neuroscience software tools/application development
and dissemination

* Integration with EEGLAB (Scott Makeig, UCSD), Human
Neocortical Neurosolver (HNN) (Stephanie Jones, Brown
University), HBP's BluePyOpt (Michele Migliore, CNR, Italy)

* CARLsim--GPU-accelerated SNN simulator (Jeffrey Krichmar,
UCI), LSNM--Large Scale Neural Simulator (Antonio Ulloa,
Neural Bytes LLC)

Education and training

* NEURON summer course, NIH- and NSF-supported
computational neuroscience and cyberinfrastructure training (U.
Missouri, UCSD), workshops at SFN and OCNS meetings

Collaborative environment
 for application development and testing, sharing code and data

Page 264 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Summary

NSG catalyzes and democratizes computational
neuroscience research for everyone, regardless of local
or institutional resources.

* If you use NSG, please cite
S. Sivagnhanam, A. Majumdar, K. Yoshimoto, V.
Astakhov, A. Bandrowski, M.E. Martone, and N.T.
Carnevale. Introducing the Neuroscience
Gateway, IWSG, vol. 993 of CEUR Workshop
Proceedings, CEUR-WS.org, 2013.

* Also please notify us nsghelp@sdsc.edu of your
presentations and publications so we can include
them in reports.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 265

Didactic Presentations The NEURON Simulation Environment

Page 266 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Creating and using NEURON models

Use hoc, Python, and/or GUI to specify:
 Biological properties--anatomy, biophysics
 Instrumentation--signal sources and recording
* User interface--parameter panels, graphs
« Simulation control--dt, tstop, integration method

Hint: keep these separate from each other

for maximum clarity and to save effort
Verify:
» Close match to conceptual model?
* Numerical accuracy adequate?
(spatial grid, integration time step or error criterion)

Specifying biological properties

Topology (branching pattern)

Geometry (diameter, length)
and

Biophysics (membrane capacitance,
ion channels, pumps . . .)

Connections between cells
(synapses, gap junctions)

... and anything else that makes sense . . .

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 267

Didactic Presentations The NEURON Simulation Environment

Biological properties: topology

Make the pieces (sections)
create

Specify the default section
access

Assemble the pieces
connect

Example

dendrite[|

soma

axon

L]

o
—_

Page 268 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

dendrite]]

soma

axon

// make the pieces 1
create soma, axon, dendrite[3]

// specify default section
access soma

// assemble them
connect axon(@), soma(0Q)
for i=0,2 {
connect dendrite[i](®), soma(1l)

}

Biological properties:
geometry and biophysics

Compartmentalization
nseg

Geometry
L, diam
Biophysical properties
Density mechanisms: insert

Examples: ion channels distributed
over the cell surface, pumps,
lon accumulation, buffers

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 269

Didactic Presentations The NEURON Simulation Environment

soma {
nseg = 1
L = 50 // [um] length
diam = 50 // [um] diameter
insert hh // Hodgkin-Huxley currents

¥

axon {
nseg = 21 // odd so a node is at 0.5
L = 1000
diam = 1
insert hh

}

for i=0,2 dendrite[i] {
nseg = 5
L = 200
diam(@:1) = 10:3 // taper
insert pas // passive membrane

¥
forall Ra = 60 // [ohm cm]

Range variables
Vary continuously in space along the length of a section
Examples: v, cm, diam

Section variables
Pertain to an entire section
Examples: Ra (cytoplasmic resistivity), L, nseg

Global variables
Same across all sections
Examples: celsius, t and dt (fixed time step integration)

Page 270 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Instrumentation

This model needs an electrode at the soma
to inject stimulating current.

Examples of "point processes™:
current clamp, voltage clamp, synapse

Object syntax

objref stim
// attach to middle of soma
soma stim = new IClamp(0.5)

stim.del = 1 // [ms] delay
stim.dur = 0.1 // [ms] duration
stim.amp = 60 // [nA] amplitude

Simulation control

Example 1: minimalist for fixed dt simulations

finitialize(-65) // initialize v, state variables, time
tstop = 5
dt = 0.025
proc simulate() {
print t, v(0.5) // soma is default section
while (t < tstop) {
fadvance() // advance solution by dt
// function calls to save or plot results, e.g.
print t, v(0.5)
// statements to change model parameters
}
}

Example 2: using the standard run system

v_init = -65 // Vm at t==0

tstop = 5 // [ms]

steps_per_ms = 40 // points plotted/ms

dt = 0.025 // [ms] integration time step

setdt() // ensures that a whole number of dts
// will fit into 1/steps_per_ms

run() // initialize, then run simulation

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 271

Didactic Presentations The NEURON Simulation Environment

Program organization

modelspec.hoc
"virtual organism"
topology, geometry, biophysics

rig.ses
"virtual experimental rig"
clamps, graphs, run control

init.hoc
"administrative wrapper"
load_file("nrngui.hoc")
load_file("modelspec.hoc")
load_file("rig.ses")

Workflow

Develop/debug "virtual organism"
hoc, Python, NMODL, GUI (CellBuilder,
Channnel Builder, Network Builder)
in whatever combination
Model View
Iterative cycle of incremental revision and testing

Use NEURONMainMenu to customize interface
attach synapses and electrodes
set up graphs and run control
specify integration method

Page 272 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 273

Didactic Presentations The NEURON Simulation Environment

Page 274 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations
Rate limited active transport
Membrane

Ca inside

KI NETI C pmp {
~ cabulk <—> cam (1/tau, 1/tau) Pump
~ cam + pump <—> capump (k1, k2)
~ capump <—>cao + pump (k3, k4)
ica_pmp = 2*FARADAY*(f_flux — b_flux)

~ cam << —(ica) : there is a problem here

COMPARTMENT width {cam} : volume has dimensions of (um)
COMPARTMENT 1 {pump capump} : area is dimensionless
COMPARTMENT 1(m) {cao cabulk}

Declarations for capump.mod

NEURON {
SUFFI X capnp
USElI ON ca READ cao, ica, cai WRITE cai, ica
RANGE tau, w dth, cabulk, ica, punmpO

}
UNITS {

(umy = (mcron)

(molar) = (1/liter)

(mvM = (mllinolar)

(u™m = (m cronol ar)

(my) = (mllianp)

(mol) = (1)

FARADAY = (faraday) (coul onb)
}

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 275

Didactic Presentations The NEURON Simulation Environment

Declarations for capump.mod

PARAMVETER { ASSIGNED {
width = 0.1 (um cao (mM) : 10
tau = 1 (nB) cai (mM) : 1e-3
k1l =5e8 (/mM-s) ica (mMA/cm2)
k2 = 0.25e6 (/s) ica_pmp (mA/cm2)
k3 =0.5e3 (/s) ica_pmp_last (mA/cm2)
k4 =5e0 (/mM-s) }

cabulk = 0.1 (uM)
pumpO = 3e-14 (mol/cm2)

STATE {
cam (uM) <le-6>
pump (mol/cm2) <le-16>
capump (mol/cm2) <le-16>

}
Equations for capump.mod

INITIAL { BREAKPO NT {
ica=0 icapmp =20 SOLVE pnp METHOD sparse
ica_pnp_last =0 ica_pnp_last = ica_pnp
SOLVE pnp STEADYSTATE sparse ica = ica_pnp

} }

KI NETI C pmp {
~ cabulk <—> cam (width/tau, width/tau)
~ cam + pump <—> capump ((1e7)*k1, (1e10)*k2)
~ capump <-> cao + pump ((1e10)*k3, (1e10)*k4)
ica_pmp = (le-7)*2*FARADAY*(f_flux — b_flux)
:ica_pmp_last vs ica_pmp needed because of STEADYSTATE
~ cam << (—(ica — ica_pmp_last)/(2*FARADAY)*(1e7))
CONSERVE pump + capump = (1e13)*pump0
COMPARTMENT width {cam} : volume has dimensions of um
COMPARTMENT (1e13) {pump capump}: area is dimensionless

COMPARTMENT 1(um) {cabulk}
COMPARTMENT (1e3)*1(um) {cao}

cai = (0.001)*cam

Page 276 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Testing capump.mod

| oad_file("nrngui.hoc")

/1l define a replacenent for the stdrun. hoc version of
proc init() {
finitialize(v_init)
fcurrent ()
}
/1l that lets you escape fromthe tyranny
/1l of the steady state initialization of cai.
proc init() { local savtau
[l will initialize cai to cabul k
savtau = tau_capnp
tau_capmp = le-6
finitialize(v_init)
tau_capmp = savtau

fcurrent()
if (cvode.active()) { cvode.re_init() }
}
Graph[0] Move Textx 64 : 76 y -(
NEURON Main Menu e)
File Edit Build Tools Graph Vector Window Graph[0] Move Text x
soma.cai(0.5) \Fx
01 05\
soma(0 - 1) (Parameters)
soma(0 - 1) (Parameters) .08 bs |-
nseg =1 061
|
04 B ORI: R7 [~e]) 71 72 7
02
0 \ \ \ | |
n 20 a0 A0 20 100

Graph[1] Move Textx -10 : 110 y -0.0003 : 0.0

D03 —
soma.ica(0.5)
Insert/Remc D02 |~
soma
pas
hh 001
capmp
capmp2
0 \ \ | |
0 20 40 A0 20 100

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 277

Didactic Presentations The NEURON Simulation Environment

Grapher

Plot | Erase AIII

Indep Begin | -4
Indep End | 2
Steps

Independent VarI X

X-expr

Ll

Generator | cabulk_capmp=10”x init()

soma.ica(0.5)

0.0025 [~

-4

Page 278 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 279

Didactic Presentations The NEURON Simulation Environment

Page 280 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The Linear Circuit Builder

For building models that have linear circuit
elements and may also involve neurons

Circuit elements include ground, current & voltage
source, R, C, op amp

Potential applications include
e effects and compensation of electrode R & C
e two-electrode voltage clamp
e ohmic and nonlinear gap junctions

1. Bring up a Linear Circuit Builder

B NEURON =10 x|

lconify

| File Edit [Build] Tools Graph Vector Window |

single compartment
Cell Builder
MNetWWaork Cell
MNetWork Builder
Linear Circuit
Channel Builde

NEURON Main Menu / Build / Linear Circuit

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 281

Didactic Presentations The NEURON Simulation Environment

The Linear Circuit Builder

M LinearCircuit[0] _I— _ID il
Clase Hide
wire + Arrange
. ~ Label
resistor « Parameters
v Simulate

capacitor
. Keep Connected
inductor ;

Hints
voltage source

current source
ground

-
i
-
_
+
> operational amplifier
=L intracellular node
=L intra- and extracellular nodes

Arrange: spawn components
Click on palette and drag onto canvas

ise iose

e v oydh

- -+

N N

b b

1 3

Page 282 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Arrange: connect components

Click and drag to e c2
overlap red circles G—Ike

Black square is - R1 gé

"solder joint"

Pull apart to break
connection

Label: move labels

4 Lahel
R c2 ~ Parameters

Click and drag W—(@ $ii

to new location E St
i

Lahel
R o2 ~ FParameters

W < Simulate
B3 + Move
ki ii Chanie

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 283

Didactic Presentations The NEURON Simulation Environment

Label: change labels 1

W Arrange
4 Label
R o2 ~ Parameters

j':VV\’E'_E'_{ + Simulate
Click on alabel ... % (_i S
Bl NEURON E

Enter device name

|B3

... to change its name

‘ Accept ¢ I| Cancel I

| e

Label: change labels 2

v Parameters
W Simulate

= C
Clickonanode... _.["" % Fi

Enter Voltage node name

... to label a voltage

‘ Accept ¢ ” Cancel I

Page 284 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Parameters: non-source elements

v Arrange
« Label
C 4 Parameters

) R o
VLEVV\/_{ i « Simulate
B i F'arameter;g C||Ck on
Source ft I "Parametersn

_| Turn off consistency checking

Parasitic aF/battery mOhm
-Iolx]

Print Matrix Infol o —
05e ide

Create class
R (Mohm) |1 g
Hints
C (nF) |1 g

Parameters: signal sources

W Arrange
« Label
Vi R o C 4 Parameters
|4[\/\/\,—{ i ~s Simulate
+
B Parameters

—3

gl Turn off consistency checking
k Parasitic aF/battery mOhm

!

Source f(t) / B

Print Matrix Info

Create class

Hints

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 285

Didactic Presentations

The NEURON Simulation Environment

Parameters: signal sources continued

I f(t) for B of Lineart Ol x|

Close Hide

External Stim Pattern

durd {ms) 1

vy [[0 &

durl (ms) 1

amp0

{
ampl (m) 1
du2 (ms) [Te+03 E|
amp2 (m) ID g
tvec is Vector[1335]

amp is Wector[1334]
amp is Yector[1334]

Configured

Simulate: creating a graph

s Arrange
« Label
« Parameters

) R Yo c
u 4 Simulate
B +

Pararmeters

l Source fit) I

Initial Conditionsl

States

New Graph ATy

MName map

Hints
[——

Page 286

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Simulate: specifying what to plot

M LincirGraph[0] fo 1ol =l

[Close Hide

PlotWhat? I I

PlotWhat? / variable label

Simulate: simulation results

M LincirGraph[0] for Linearl:ircuit[lig. i |EI|1|
Close Hide
—
Plotyyhat?
-
-
W)
08 o)
06—
04—
0z
0 | |
0 1 2 3 4 5

After minor cosmetic changes

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 287

Didactic Presentations The NEURON Simulation Environment

Patch clamp with electrode R and C

ve Rel Vc Re2 vm

iclamp 7| ce
l soma(0.5)

M LincirGraph[0] for Linearl:ircuit[llg_ = |EI|1| M LincirGraph[1] for Linearl:ircuit[l]ff = |EI|5|
Clase Hide Clase Hide

Plot¥hat? I Plotyvhat? I
|
0ar-

Iclamp (nA) | | Ve {mY)

04 B g M)
03[
02
01—

o | | | |

0 2 4 53 g 10

NEURON demo: dynamic clamp

M LinearCircuit[0] b oy] 4|
Close Hide

W Arrange
« Label

+ Parameters
= 4 Simulate

; Parameters
\f’lc Ri —|
| Source fit) I
nth{0.5) J Initial Conditionsl
W States
ve Ret =
1" ReaZ 12 MNew Graph
4
MNarme map
somall.g) Hints

Page 288 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 289

Didactic Presentations The NEURON Simulation Environment

Page 290 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

NEURON's tools for
Analysis of Electrical Signaling

 Input and transfer impedances

* Voltage transfer ratio

Vdownstream/ Vupstream

» Electrotonic transformation

|Og (VdOWHS tr eam/ VUpS tr eam)
... all as functions of frequency and space

Classical Cable Theory

VO —> V(Y
- : \ /

Infinite cylinder R ...
in the steady state:

I
0 X

V(x) = V(0) eX/A
x = physical distance
A = length constant
Classical "electrotonic distance"
X =1In V(0)/V(x) = xIA
so attenuation AY(x) = V(0)/V(x) = eX
Intuitively simple

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 291

Didactic Presentations The NEURON Simulation Environment

Problems

Neurons are not infinite cylinders.

Attempted fix: reduce dendritic tree to
finite length equivalent cylinder

AV(x) = cosh L classical ! €0Sh (Lejassical = X)
L = physical length / A

classical —
X=x/A

The bad news about the
equivalent cylinder approximation

* Neither intuitive nor simple. —o\ jo— —oflo—
» Destroys spatial relationships among E=
synaptic inputs.

 Classical electrotonic distance X =x /A
fosters conceptual error by obscuring
the direction-dependence of attenuation
in finite structures.

Page 292 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

The good news about the
equivalent cylinder approximation

It isn't valid
Property Assumption Truth
Dendritic electrically varies widely
terminations equidistant
from soma
Diameters cylindrical irregular
Branch points 3/2 power rule no

312 — 3/2
d,32 =3 d;

The Electrotonic Transformation

A transformation from anatomical
to electrotonic space that

* is intuitive
* is empirically-based

* makes no restrictive assumptions
about anatomy

Anatomical space

measure: physical distance

Electrotonic space
measure: log(attenuation)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 293

Didactic Presentations The NEURON Simulation Environment

Foundation: two-port analysis
of electrotonus

How well do signals propagate?

Signal transfer is direction-dependent: A,-jV Z Aj,-V

. . — . V _ l I _
Attenuation identities: A;Y = Al A; —A,-jQ

The Electrotonic Transformation

Functional definition of electrotonic distance
L = log(attenuation)
v simple, direct relationship to attenuation
v direction-dependent: L,-jV = Iog(A,-jV), Lj,-V = Iog(Aj,-V),
and in general L;V # L;"

v in an infinite cylinder, is identical to
classical electrotonic distance
Vi Vi Vi

v additive over a path with constant ° o °
direction of propagation L. L

V- - A VAV
AV = ViIVy = (VIV)-(VIVi) = AV Ay

Page 294 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

At a frequency of interest

1. compute log(attenuation) between a reference point
and all other points of interest

2. display results graphically (optional)
A convenient reference point: the soma

Changing the reference point affects only
the direction of signal flow on the direct path
between the old and new locations.

The attenuation identities give us the transform identities
Vin = lout = Qout @Nd Voye = lin = Qjpy

Using the Electrotonic Transformation

Synaptic location and synaptic efficacy

Q: What predicts how PSP amplitude at the soma
varies with synaptic location?

A: If synapses act like voltage sources,
A,-nV (voltage attenuation from synapse to soma)

or
Ksyn->soma (Synapse to soma voltage transfer ratio)

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Page 295

Didactic Presentations

The NEURON Simulation Environment

Vv Vv

soma syn l
]
| "
lsoma
\Y Vv
soma syn
z z ;

| L2l L0] |
soma syn

From Fig. 1 in Jaffe & Carnevale 1999
If synapses act like voltage sources,
Vsyn(t) is independent of synaptic location
and
synapse to soma voltage transfer ratio

Ksyn->soma = 1 IAiRY =21 (Zp+2Z,)

predicts variation of somatic PSP amplitude
with synaptic location.

Results:

0.5
© __04f
>
s E
< 0.3 b
t £
S 0 0.2F -1
=
~‘<u, >
0.1fF -
00705 200 300 400 500 00,700 200 300 200 500
Distance to soma (um) Distance to soma (um)
Somatic PSP predicted by Somatic PSP generated by
voltage transfer ratio conductance-change synapse
ksyn->soma
From Fig. 5 in Jaffe & Carnevale 1999
1. ksyn_>soma fails to predict the relationship between

somatic PSP amplitude and synaptic location.
2. Synapses do not act like voltage sources.

Q1: What do synapses act like?

Q2: What would be a better predictor of the relationship

Page 296 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

between somatic PSP and synaptic location?

The NEURON Simulation Environment Didactic Presentations

soma

soma

Vsoma v

syn
I Lal Lo |
soma syn

From Fig. 1 in Jaffe & Carnevale 1999

If synapses act like current sources,
Isyn(t) is independent of synaptic location
and
transfer impedance Z_ predicts the variation of
somatic PSP amplitude with synaptic location.
Let'stryit. ..

0.5
__04f
>
E
o 0.6 - < 0.3 -
<N IS
0.4F -1 8 0.2 -1
>
0.2 b 01 L
00,705 200 300 400 500 007700 200 300 400 500
Distance to soma (um) Distance to soma (um)
Somatic PSP predicted by Somatic PSP generated by
transfer impedance Z c conductance-change synapse

From Fig. 5 in Jaffe & Carnevale 1999
Results:

1. Normalized transfer impedance 20 predicts the relationship
between somatic PSP amplitude and synaptic location.
2. Synapses act like current sources.

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 297

Didactic Presentations The NEURON Simulation Environment

soma

soma

Vsoma v

syn
: %2 T 1%] :
soma syn

From Fig. 1 in Jaffe & Carnevale 1999

Soma to synapse voltage transfer ratio ksma.5syn I

identical to normalized transfer impedance ZC.
Proof: Ksoma->syn = Zc/ (Za + Zp) = 2/ Z*°™4

but Z,5°Ma is the maximum transfer Z between

any location and the soma.

Therefore ksoma_>syn =Z c

Page 298 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 299

Didactic Presentations The NEURON Simulation Environment

Page 300 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

GUI development

Making your own graphical interface

@ To ensure your GUI responds
to user input, be sure to:
from neuron import gui

@ Place basic widgets (text,
buttons, checkboxes, ...) in
an h.xpanel.

from neuron import h, gui

.xpanel ('Example 1')
.xlabel('Hello class')
.xbutton('Click me')
.xpanel ()

[= = = R =

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 301

Didactic Presentations The NEURON Simulation Environment

Button actions

To perform an action when a
button is pressed, write it as a
function, and then pass the
function to h.xbutton.

from neuron import h, gui

def say_hello():

print('hello! ") Pressing the button displays:

hello!
h.xpanel ('Example 2')

h.xbutton('Click me',
say_hello)

h.xpanel () hello!
hello!

Pressing the button twice:

Number fields and classes

Place your GUI commands in a class to allow independent reuse.

from neuron import h, gui
class Demo: Close Hide

def __init__(self) . Choose a number: || 3.57 =
self.value = 7.18 IESEJ"‘J Close Hide
h.xpanel('Demo') Choose a nuiber: [771
Press me

h.xvalue('Choose a number:',

(self, 'value')) C . " "
b. xbutton('Press me’ Clicking “Press me" on the left

self.print_value) window and then on the ﬁght

h.xpanel () window displays:
def print_value(self):

print('You chose:')

Y h .
print(self.value) ou chose
3.67
make two demos You chose:
o D Demol) 7.11
d2 = Demo()

Page 302 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Layout: HBox and VBox

Combine windows horizontally with HBox and vertically with VBox.

from neuron import h, gui
hbox = h.HBox ()
hbox.intercept (1)

.xpanel ('Example 1')
.xlabel('Hello class')

xbutton('Click me')
.xpanel () T——
.xpanel ('Example 3') €lio Class SaYhE”UI

.xbutton('Say hello') Click me
.xpanel ()

.xpanel ()

hbox.intercept (0)

hbox.map ()

[= S = S R = = = =

Note: HBox and VBox can contain: H/VBox, Deck, xpanel, Graph, ...

Layout: HBox and VBox

Complicated layouts can be constructed using nested VBox and HBox objects:

Close Hide
- About < Topology 4 Subseis - Geometry - Biophysics - Management D Continuous Create

all all First, select,
[branch1 Select
. Select One

Select Subtree
..~ Select Easename
then, act.

Selection-=Seclist

Delete SecList

Change MName

Parameterized Ciomain Pagel

| Hints I

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 303

Didactic Presentations The NEURON Simulation Environment

Page 304 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Version control with Git

Robert A. McDougal

Yale School of Medicine

Why use version control?

@ Protects against losing working code: if something used to work but no
longer does, you can test previous versions to identify what change caused
the error.

@ Provides a record of script history: authorship, changes, ...

@ Promotes collaboration: provides tools to combine changes made
independently on different copies of the code.

git is one of the most widely used version control tools today. You can download
it from:

https://git-scm.com/

Many people choose to share their git repositories (privately* or publicly) on
GitHub.com or BitBucket.org.

Fees may apply for private repositories, but both of these websites provide free exceptions in certain cases, and your university may provide a free
alternative

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 305

Didactic Presentations The NEURON Simulation Environment

Version control: git basics

Setup

git init
Stage new/modified files for next commit:

git add FILENAME

See what has changed

git diff
See the status of the repo (what files are missing, etc)

git status

Commit a version (so can return to it later); you will be prompted to enter a
commit message:

git commit

Return to the version of FILENAME from 2 commits ago

git checkout HEAD™2 FILENAME

Version control: git branches

Develop features in branches and then merge back.

Create a new branch:
git checkout -b branchname
Switch back to an existing branch:
git checkout existingbranchname
Merge from another branch:
git merge otherbranchname
Delete a branch:

git branch -d branchtoremove

Other options for merging branches are available, including git rebase and git merge --squash.

Page 306 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Version control: git

View list of changes
git log
Remove a file from tracking
git rm FILENAME
Rename a tracked file

git mv OLDNAME NEWNAME

Version control: git and remote servers

git (and mercurial) is a distributed version control system, designed to allow you
to collaborate with others. You can use your own server or a public one like github
or bitbucket.
Clone (download) from a server
git clone http://URL
Clone a specific branch
git clone http://URL -b branchname

Get changes from server and merge with local changes

git pull
Sync local, committed changes to the server

git push
Sync changes on local master to a new branch on server

git push origin master:remote-branch-name

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 307

Didactic Presentations

GitHub

® © @ () The NEURON Simulator

< (G

@ GitHub, Inc. [US] | https://github.com/neuronsimulator w

The NEURON Simulation Environment

X+

Pull requests Issues Marketplace Explore

http://neuron.yale.edu

The NEURON Simulator

[Repositories & People a4 Teams O Projects 0 Settings
Pinned repositories Customize pinned repositories
E nrn £ B iv =
NEURON Simulator. (iv required for the GUI) Needed for NEURON GUI
®c ka9 Yas @®@c++ K1 V3
Type: All » Language: All ~
Top languages
progref-py prlangiag
NEURON Python programmer's reference @Python @C++ @C
@®Python k2 ¥2 lissueneedshelp Updated 14 hours ago
People 4>
nrn o ?
- Vi

GitHub

® © @ () hsectionListconstructornow X 4

<« C 0 & GitHub, Inc. [US] | https://github.com/neuronsimulator/nrn/commit/d889431668626d.. & @ ® PR

Issues

Pull requests

Marketplace Explore

L] neuronsimulator / nrn @Unwatch~ 14 Sunstar 49 | YFork 33

<> Code Issues 22 Pull requests 0 Projects 0 Wiki Security Insights Settings

h.SectionList constructor now accepts an iterable (#206) Browse files

Example:

from neuron import h

soma = h.Section(name='soma')
dend = h.Section(name="'dend")

h.SectionList([soma, dend, somal).printnames()
I master (#206)

4 ramcdougal authored and nrnhines committed 7 days ago 1 parent f2e@ab® commit d88943f658626d71826bc3aleSefbd65d510d9ch

Showing 3 changed files with 65 additions and 4 deletions. Unified = Split

v 15 EEEEE src/nrnoc/seclist.c [
st @@ -19,11 +19,21 @@

extern int hoc_return_type_code;
Sectionx (+nrnpy_o2sec_p_)(Objectx 0);

&

void (nrnpy_sectionlist_helper_)(Listx, Objects) = 8;
¥
+ void lvappendsec_and_ref (void+

Page 308 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal,

all rights reserved

The NEURON Simulation Environment Didactic Presentations

Version control: syncing data with code

One simple way to ensure you always know what version of the code generated

your data is to include the git hash in the filename. The following function can
help:

def git_hash():
import subprocess

suffix = "'

if subprocess.check_output(['git', 'diff']):
suffix = '+!'

return '%s%s' % (subprocess.check_output([
'git', 'log', '-1', '--pretty=format:%h']),
suffix)

Then, for example, save matplotlib graphics with:

pyplot.savefig('filename_ ' + git_hash() + '.pdf')

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 309

Didactic Presentations The NEURON Simulation Environment

Page 310 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 311

Didactic Presentations The NEURON Simulation Environment

Page 312 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

The NEURON Simulation Environment Didactic Presentations

Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved Page 313

Didactic Presentations The NEURON Simulation Environment

Receipt

Received:
From:

For: NEURON 2019 Summer Course
http://www.neuron.yale.edu/neuron/static/courses/summer2019/summer2019.html

Date:

By: N.T. Carnevale
Director, NEURON 2019 Summer Course
203-494-7381
ted.carnevale@yale.edu

For deposit in: Yale University account "NNC--Fees"

Page 314 Copyright © 1998-2019 N.T. Carnevale, M.L. Hines, and R.A. McDougal, all rights reserved

Copyright © 1998-2018 N.T. Carnevale and M.L. Hines, all rights reserved Survey

Survey

We'd appreciate your frank opinions and suggestions to help us refine this course and
design future offerings on related subjects.

Please score these items according to this scale

Overall impression no opinion 0
Relevance to my research - poor, not helpful 1
Didactic presentations - fair 2
Hands-on exercises - good 3
Written handouts - excellent, very helpful 4

Overhead transparencies
Computer projection

Computer classroom

Best feature

Weakest feature

Additional topics that should be covered, topics that should receive more or less
coverage, or other suggestions for improvement.

Circle one

Y N I would recommend this course to others who are interested in neural
modeling.

My area of primary research interest is

Circle one

Y N I have developed my own modeling software using a high-level language
(FORTRAN, C/C++, Python etc.).

Y N I have created my own models using modeling software.

Which software?

