Scripting NEURON

Robert A. McDougal
Yale School of Medicine

18 October 2019



What is a script?

A script is a file with computer-readable instructions for performing a task.

In NEURON, scripts can: set-up a model, define and perform an experimental
protocol, record data, ...

Why write scripts for NEURON?

@ Automation ensures consistency and reduces manual effort.
o Facilitates comparing the suitability of different models.

o Facilitates repeated experiments on the same model with different parameters
(e.g. drug dosages).

Facilitates recollecting data after change in experimental protocol.

@ Provides a complete, reproducible version of the experimental protocol.




Programmer’s Reference

( NEURON | empirically-based « x Robert

<« © (v | @& Secure  https://neuron.yale.edu/neuron/ # * R

NEURON e

DOWNLOAD ~ DOCUMENTATION ~ COURSES ~ PUBLICATIONS ~ RESOURCES ~ ABOUT US Search n

FORUM  MODELDB  PROGRAMMER'S REFERENCE

Welcome to the community ©
NEURON users and developers!

The NEURON simulation environment is used in Here you will find installers and source code,

Users who have special interests and expertise are invited

laboratories and classrooms around the world for building
and using computational models of neurons and networks
of neurons.

DOWNLOAD

<documentation, tutorials, announcements of courses and
conferences, and discussion forums about NEURON in
particular and computational neuroscience in general.

THE NEURON FORUM

to participate in the NEURON project by helping to
organize future meetings of the NEURON Users Group, and
by participatingin collaborative development of
documentation, tutorials, and software. We also welcome
suggestions for ways to make NEURON a more useful tool
for research and teaching.

LATEST NEWS

Download macOS installer

All standard versions

Alphaversions
Source on github

« NEURON Installation
« Making and using models
« Programming NEURON with Python

o NFIIRON in adieation

neuron.yale.edu

10 July  Multiscale modeling with
2018 NEURON tutorial at CNS 2018



[ Graph —NEURON 7.6 docur X Rabert

& C @ Secure  https://www.neuron.yale.edu/neuron/static/py_doc/visualization/graph.htmi Q% &

NEURON 7.5 documentation » Switch to HOC | previous | next | modules | modules | index

Previous topic Graph
Glyph addexpr - addobject - addvar - align + begin - beginline - brush - color - crosshair_action - erase ' erase_all *
exec_menu - family - fastflush - fixed - flush - getline - gif - glyph - label - line - line_info + mark -

Next topic menu_action - menu_remove - menu_tool - plot - printfile - relative - save_name - simgraph - size - unmap -
Grapher vector - vfixed - view - view_count - view_info - view_size - xaxis * xexpr * yaxis
This Page
Show Source Graph
Questions? class Graph
Ask the NEURON Forum.
Syntax:

Quick search

[ )

Enter search terms or a module,

g = h.Graph()
g = h.Grapn(0)

Description:

class or function name.

An instance of the Graph class manages a window on which x-y plots can be drawn by calling
various member functions. The first form immediately maps the window to the screen. With a 0
argument the window is not mapped but can be sized and placed with the view() function.

Example:
The most basic interpreter prototype for producing a plot follows:
from neuron import h, gui

import math

# Create the graph
g = h.Graph()

# specify coordinate system for the canvas drawing area
# numbers are: xmin, xmax, ymin, ymax respectively
g.size(0, 10, -1, 1)

# the next g.line command will move the drawing penm to the

Use the “Switch to HOC" link in the upper-right corner of every page if you need documentation for HOC, NEURON's original programming language.
HOC may be used in combination with Python: use h.load-file to load a HOC library; the functions and classes are then available with an h. prefix.



Introduction to Python



Displaying results
The print command is used to display non-graphical results.

It can display fixed text:
print ('Hello everyone.') Hello everyone.

or the results of a calculation:
print (56 * (3 + 2)) 25

| \

Storing results
Give values a name to be able to use them later.

a = max([1.2, 5.2, 1.7, 3.6])
print (a) 5.2

A\

In Python 2., print is a keyword and the parentheses are unnecessary. Using the parentheses allows your code to work with both Python 2.x and 3.x.



Don't repeat yourself

Lists and for loops

To do the same thing to several items, put the items in a list and use a for loop:
numbers = [1, 3, 5, 7, 9]
for number in numbers:
print (number * number) 19 25 49 81

Items can be accessed directly using the [| notation; e.g. n = number [2]

To check if an item is in a list, use in:

print (4 in [3, 1, 4, 1, 5, 9]) True
print (7 in [3, 1, 4, 1, 5, 9]) False

Dictionaries

| A\

If there is no natural order, specify your own keys using a dictionary.

data = {'soma': 42, 'dend': 14, 'axon': 'blue'}
print (datal['dend']) 14

A\




Don't repeat yourself

Functions

If there is a particularly complicated calculation that is used once or a simple one
used at least twice, give it a name via def and refer to it by the name. Return the
result of the calculation with the return keyword.

def area_of_cylinder(diameter, length):
return 3.14 / 4 * diameter ** 2 * length

area_of_cylinder(2, 100)
area_of_cylinder (10, 10)

areal

area?2




Using libraries
Libraries (“modules” in Python) provide features scripts can use.
To load a module, use import:

import math
Use dot notation to access a function from the module:

print (math.cos(math.pi / 3)) 0.5
One can also load specific items from a module.

For NEURON, we often want:
from neuron import h, gui

Other modules

Python ships with a large number of modules, and you can install more (like
NEURON). Useful ones for neuroscience include: math (basic math functions),
numpy (advanced math), matplotlib (2D graphics), mayavi (3D graphics),
pandas (analysis and databasing), ...




Getting help

To get a list of functions, etc in a module (or class) use dir:

from neuron import h
print (dir(h))

Displays:

['APCount', 'AlphaSynapse', 'BBSaveState', 'CVode', 'DEG', 'Deck',
'E', 'Exp2Syn', 'ExpSyn', 'FARADAY', 'FInitializeHandler',
'File', 'GAMMA', 'GUIMath', 'Glyph', 'Graph', 'HBox', 'IClamp',
'Impedance', 'IntFirel', 'IntFire2', 'IntFire4', 'KSChan', ...]

To see help information for a specific function, use help:
help(math.cosh)

Python is widely used, and there are many online resources available, including:
@ docs.python.org — the official documentation
@ Stack Overflow — a general-purpose programming forum
@ the NEURON programmer’s reference — NEURON documentation
o the NEURON forum — for NEURON-related programming questions



Basic NEURON scripting



Creating and naming sections
A Section in NEURON is an unbranched stretch of e.g. dendrite.

To create a Section, use h.Section and assign it to a variable:

apical = h.Section(name='apical')
A Section can have multiple references to it. If you set a = apical, there is still
only one Section. Use == to see if two variables refer to the same Section:

print (a == apical) True

Python's str function returns the name of a Section:
print (str(apical)) apical

Also available: a cell attribute for grouping Sections by cell.

The last print is equivalent to print (apical) but str was shown to illustrate how to get a string representation.



Connecting sections

To reconstruct a neuron'’s full branching structure, individual sections must be
connected using .connect:
dend?2. connect (dend1 (1))

Each section is oriented and has a 0- and a 1-end. In NEURON, traditionally the
0-end of a section is attached to the 1-end of a section closer to the soma. In the
example above, dend2's 0-end is attached to dendl's 1-end.

0o dend2

? dend1

To print the topology of cells in the model, use h.topology (). The results will
be clearer if the sections were assigned names.
h.topology ()

If no position is specified, then the 0-end will be connected to the 1-end as in the example.



Example

Python script: Output:
from neuron import h

-1 soma(0-1)
# define sections < proxApical(O—l)
soma = h.Section(name='soma') ¢ .
papic = h.Section(name='proxApical') [ ap1c1(0—1)
apicl = h.Section(name=‘apicl'; ‘| apicQ(O—]_)
apic2 = h.Section(name='apic2' ¢ _
pb = h.Section(name='proxBasal') | pro;FBasal(O D
dbl = h.Section(name='distBasall') ‘| distBasall(0-1)
db2 = h.Section(name='distBasal2') < distBasal2(0-1)

# connect them

papic.connect (soma)

pb.connect (soma(0)) MOFPhO'OgyZ
apicl.connect (papic)

apic2.connect (papic)

db1l.connect (pb) OZS‘/@ oL
& 2
db2.connect (pb) QU )/
\\ proxBasal soma  proxApical "3
# list topology 6\5\66% ey

h.topology ()



Length, diameter, and position

Set a section’s length (in um) with .L and diameter (in pm) with .diam:
sec.L = 20

sec.diam = 2

Note: Diameter need not be constant; it can be set per segment.

To specify the (x,y,z; d) coordinates that a section sec passes through, use e.g.
sec.pt3dadd(x, y, z, d). The section sec has sec.n3d() 3D points; their
ith x-coordinate is sec.x3d(i). The methods .y3d, .z3d, and .diam3d work
similarly.

Warning: the default diameter is based on a squid giant axon and is not
appropriate for modeling mammalian cells. Likewise, the temperature
(h.celsius) is by default 6.3 degrees (appropriate for squid, but not for
mammals).



Tip: Define a cell inside a class

Consider the code

class Pyramidal:
def __init__(self):
self.soma = h.Section(name='soma', cell=self)

The _init__ method is run whenever a new Pyramidal cell is created, e.g. via
pyrl = Pyramidal()

The soma can be accessed using dot notation:
print (pyrl.soma.L)

By defining a cell in a class, once we’re happy with it, we can create
multiple copies of the cell in a single line of code.

pyr2 = Pyramidal()

or even

pyrs [Pyramidal() for i in range(1000)]



Tip: Sections that work well with GUI tools

For meaningful Section names to appear in the GUI tools, the name attribute must
be specified for top-level Sections:

soma = h.Section(name='soma')

For Sections in cells, specify the name of the Section and the __str__ of the cell:

00 [\ NEURON

class GranuleCell:
def __init__(self, gid):
self._gid = gid
self.soma = h.Section(name='soma', cell=self)
def __str__(self):

return 'GranuleCell[{}]'.format(self._gid)

g = GranuleCell(0)

To see the list of Sections or cells, select Show > Python Sections.



Viewing the morphology with h.PlotShape

from neuron import h, gui

class Cell:
def __init__(self):
main = h.Section(name='main', cell=self)

dendl = h.Section(name='dendl', cell=self) —
dend2 = h.Section(name='dend2', cell=self) Close Hide

dend1.connect (main)
dend?2.connect (main)

main.diam = 10
dendl.diam = 2
dend2.diam = 2

# Important: store the sections
self.main = main; self.dendl = dendl
self.dend2 = dend2

my_cell = Cell()

ps = h.PlotShape()
# use 1 instead of O to hide diams
ps.show(0)

Note: PlotShape can also be used to see the distribution of a parameter or
variable. To save the PlotShape ps use ps.printfile('filename.eps').



Viewing voltage, sodium,

Suppose we make the voltage ('v"') .
nonuniform, which we can do via: o 3

D
my_cell.main.v = 50 35008
my_cell.dendl.v = O

my_cell.dend2.v = -65

We can create a PlotShape that
color-codes the sections by voltage:

ps = h.PlotShape()
ps.variable('v')
ps.scale(-80, 80)
ps.exec_menu('Shape Plot')
ps.show(0)

After increasing the spatial resolution: Xowrommywe - o«

Close Hide |

for sec in h.allsec(): sec.nseg = 101
We can plot the voltage as a function of
distance from main(0) to dend2(1): ol

rvp = h.RangeVarPlot( ® e 150 =0
'v', my_cell.main(0), my_cell.main(1)) |-wf

g = h.Graph()

rvp.plot(g)

g.exec_menu('View = plot')

Sodium concentration could be plotted with 'nai' instead of 'v', etc.



Aside: Jupyter

 basic-jupyter2 ® Robert
> 1 O localhost:8888/notebooks/Dropbox/active-work-files jupytertest/basic-jupyter2.ipynb P
ZJu pyt €I Dbasic-jupyter2 Last Checipoint: 9 minutes ago (unsaved changes) A
File Edit View Insert Cell Kernel Widgets Help ‘ Python [defaut] O

B 4+ 5 B B A ¢ M B C| Code i @  Celoobar @ & ©

Jupyter notebooks
allow mixing code with richly formatted documentation and output.
The code can be easily edited and rerun.

In [1]: for i An range(5):
nt('(} ** 2 = {}'.format(i, i*+2))

0*x2=0
1*x2=1
2%x2=1
3xx2=9
4% 2=16

In [2]: from IPython.display import display, HTML
@ef squares (nums):
result = ' 7 P p></th></tr>"
for n in nums
result 4= '<tr><td>{}</td><td>(}</td></tr> . fornat(n, n*12)
result += '</table>
display(HTML (result))

In [3]: squares([1, 4, 6, 42])




Aside: Jupyter

In [1]: =matplotlib notebook

In [2]: from neuron import h
from matplotlib import pyplot, cm
h.load file('stdrun.hoc')

out[2]: 1.8

In [3]: h.load_file('geo5038804.hoc")
for sec in h.allsec():
sec.insert('hh’

In [4]: ic = h.IClamp(h.soma[@](e.5))
ic.delay = 0; ic.dur = 1; ic.amp = 5
h.finitialize(-65)
h.continuerun(2)

Out[4]: .8

In [5]: ps = h.PlotShape(False)
ps.plot(pyplot, cmap=cm.jet).mark(h.soma[©](©.5)).mark(h.apical dendrite[68](1), marker='ob')

Figure 1




Loading morphology from an swc file

To create pyr, a Pyramidal cell with morphology from the file c91662. swc:

from neuron import h, gui
h.load_file('import3d.hoc')

class Pyramidal:

def __init__(self):
self.load_morphology()
# do discretization, ion channels, etc

def load_morphology(self):
cell = h.Import3d_SWC_read()
cell.input('c91662.swc')
i3d = h.Import3d_GUI(cell, 0)
i3d.instantiate(self)

pyr = Pyramidal()

pyr has lists of Sections: pyr.apic, .axon, .soma, and .all. Each Section has
the appropriate .name () and .cell().

Only do this in code after you've already examined the cell with the Import3D GUI tool and fixed any issues in the SWC file.



Working with multiple cells

Suppose Pyramidal is defined as before and we create several copies:

mypyrs = [Pyramidal(i) for i in range(10)]

We then view these in a shape plot:

Where are the other 9 cells?



Working with multiple cells

To create a method to reposition a cell and call it from __init__:

class Pyramidal: def __init__(self, gid, x, y, 2z):
def _shift(self, x, y, 2z): self._gid = gid

soma = self.somal[0] self.load_morphology ()

n = soma.n3d() self._shift(x, y, z)

xs = [soma.x3d(i) for i in range(n)]

ys = [soma.y3d(i) for i in range(n)] def load_morphology(self):

zs = [soma.z3d(i) for i in range(n)] cell = h.Import3d_SWC_read()

ds = [soma.diam3d(i) for i in range(n)] cell.input('c91662.swc')

for i, (a, b, ¢, d) in enumerate(zip(xs, ys, zs, ds)): i3d = h.Import3d_GUI(cell, 0)
soma.pt3dchange(i, a + x, b +y, ¢ + z, d) i3d.instantiate(self)

Now if we create ten, while specifying offsets,
mypyrs = [Pyramidal(i, i * 100, 0, 0) for i in range(10)]

The PlotShape will show all the cells separately:




Does position matter?

Sometimes.

Position matters with:
@ Connections based on proximity of axon to dendrite.
@ Connections based on cell-to-cell proximity.
o Extracellular diffusion.
°

Communicating about your model to other humans.



Distributed mechanisms

Use .insert to insert a distributed mechanism into a section. e.g.
axon.insert('hh')

Point processes

To insert a point process, specify the segment when creating it, and save the
return value. e.g.
pp = h.IClamp(soma(0.5))

To find the segment containing a point process pp, use
seg = pp.get_segment ()

The section is then seg.sec and the normalized position is seg.x.
The point process is removed when no variables refer to it.
Use List to find out how many point processes of a given type have been defined:

all_iclamp = h.List('IClamp')
print ('Number of IClamps:')
print (len(all_iclamp))




Setting and reading parameters

In NEURON, each section has normalized coordinates from 0 to 1.

To read the value of a parameter defined by a range variable at a given normalized
position use: section(x).MECHANISM.VARNAME

e.g.
gkbar = apical(0.2).hh.gkbar
Setting variables works the same way:
apical(0.2) .hh.gkbar = 0.037

To specify how many evenly-sized pieces (segments) a section should be broken
into (each potentially with their own value for range variables), use
section.nseg:

apical.nseg = 11
To specify the temperature, use h.celsius:

h.celsius = 37



Setting and reading parameters

Often you will want to read or write values on all segments in a section. To do
this, use a for loop over the Section:

for segment in apical:
segment.hh.gkbar = 0.037

The above is equivalent to apical.gkbar hh = 0.037, however the first version
allows setting values nonuniformly.

A list comprehension can be used to create a Python list of all the values of a
given property in a segment:
apical_gkbars = [segment.hh.gkbar for segment in apicall

Note: looping over a Section only returns true Segments. If you want to include
the voltage-only nodes at 0 and 1, iterate over, e.g. apical.allseg() instead.

HOC's for (x,0) and for (x) are equivalent to looping over a section and looping over allseg, respectively.



Running simulations: the basics

To initialize a simulation to -65 mV:
h.finitialize(-65)
To advance a single time step:

h.fadvance()

For higher-level controls, load the stdrun.hoc library:
h.load file('stdrun.hoc')
With that library loaded, we can:
Run a simulation until t = 50 ms:
h.continuerun(50)

Additional h.continuerun calls will continue from the last time.

stdrun. hoc is loaded automatically during a from neuron import gui.



Running simulations: improving accuracy

Increase time resolution (by reducing time steps) via, e.g.

h.dt = 0.01
Enable variable step (allows error control):

h.CVode () .active(True)
Set the absolute tolerance to e.g. 1075:
h.CVode() .atol(le-5)

Increase spatial resolution:

sec.nseg = 11
To increase nseg for all sections:

for sec in h.allsec(): sec.nseg *= 3

The default absolute tolerance is 10_2, but with different variables assigned different tolerance scales using cvode.atolscale or Tools >
VariableStepControl > Atol Scale Tool. Relative tolerance may also be set using rtol, but if using that set atol to 0 first, otherwise the allowed error will
be greater than both; see the programmer’s reference for details.



Recording data

To see how a variable changes over time, create a Vector and pass in a pointer
(prefix the end of the variable name with _ref_) to the record method; e.g. to
record soma(0.3) .ina, use

data = h.Vector() .record(soma(0.3)._ref_ina)

| \

Tips
@ Be sure to also record h. _ref_t to know the corresponding times.

@ .record must be called before h.finitialize().

A\

If v is a Vector, then v.as_numpy () provides the equivalent numpy array; that is, changing one changes the other.



Example: Hodgkin-Huxley

from neuron import h, gui
from matplotlib import pyplot

# morphology and dynamics
soma = h.Section(name='soma')
soma.insert('hh')

# current clamp

20
i = h.IClamp(soma(0.5))
i.delay = 2 # ms o
i.dur = 0.5 # ms
i.amp = 50 20
# recording 40

t = h.Vector() .record(h._ref_t)
v = h.Vector() .record(soma(0.5)._ref_v)

# simulation 10 20 30 70 o
h.finitialize(-65)
h.continuerun(49.5)

# plotting
pyplot.plot(t, v)
pyplot.show()



Operational definition of a spike: Vm crossing a threshold (e.g. 0 mV) in a
positive-going direction. NEURON's NetCon objects can detect this directly, but
Python can easily find all spike times from a voltage time series. Only changes
from the previous example are highlighted.

from neuron import h, gui
from matplotlib import pyplot
soma = h.Section(name='soma')
soma.insert('hh') 40
# current clamps
iclamps = []
for t in [2, 13, 27, 40]: o
i = h.IClamp(soma(0.5))
i.delay = t # ms 2
i.dur = 0.5 # ms
i.amp = 50
iclamps.append (i) -6
# recording
t = h.Vector().record(h._ref_t) 0 20 0 o 0
v = h.Vector() .record(soma(0.5)._ref_v)
nc = h.NetCon(soma(0.5)._ref_v, None, sec=soma)
spike_times = h.Vector() The console displays:
nc.record(spike_times)

imulati spike times:
# simulation [3.225000000100012, 28.20000000009893,

h.finitialize(-65) 41.70000000010092]
h.continuerun(49.5)

print('spike times:') . i

print (list(spike_times)) That is, the cell spiked at: 3.225
# plotting

pyplot.plot(s, v) ms, 28.200 ms, and 41.700 ms.
pyplot.show()



Interspike intervals (ISIs) are the delays between spikes; that is, they are the
differences between consecutive spike times.

To display ISls for the previous example, we add the lines:
isis = [next - last for next, last in zip(st[1l:], st[:-1]1)]

print ('ISIs:')
print (isis)
The result:

[24.974999999998925, 13.475000000001966]

That is, the delays between spikes were 24.975 ms and 13.475 ms.



Networks of neuro

Suppose we have the simple neuron model:

from neuron import h, gui
from neuron.units import ms

class Cell:
def __init__(self):

self.soma = h.Section(name='soma', cell=self)
self.soma.insert('hh')

and two cells:

Cell()
Cell()

neuroni
neuron2

one of which is stimulated by a current clamp:

ic = h.IClamp(neuronl.soma(0.5))

ic.amp = 50

ic.delay = 2 * ms

ic.dur = 0.5 * ms
A synapse from that cell to the other may cause the second cell to fire when the
first cell is stimulated. In NEURON, the post-synaptic side of the synapse is a
point process; presynaptic threshold detection is done with an h.NetCon.



Networks of neurons

Setup the post-synaptic side:
postsyn = h.ExpSyn(neuron2.soma(0.5))
postsyn.e = 0 # reversal potential
Setup the presynaptic side, transmission delay, and synaptic weight:

syn = h.NetCon(neuronl.soma(0.5)._ref_v, postsyn, sec=neuronl.soma)
syn.delay = 1
syn.weight[0] = 5

Then we can setup recording, run, and plot as usual:

t = h.Vector().record(h._ref_t)
vl = h.Vector() .record(neuroni.soma(0.5)._ref_v)
v2 = h.Vector() .record(neuron2.soma(0.5)._ref_v)

h.finitialize(-65)
h.continuerun(10)

from matplotlib import pyplot o
pyplot.plot(t, vi, t, v2) 20
pyplot.x1im((0, 10))
pyplot.show()

h.ExpSyn is one of several general synapse types distributed with NEURON; additional ones may be specified in NMODL or downloaded from
ModelDB.

The use of h.NetCon must be modified slightly to support parallel simulation; this is discussed in a different presentation.



Storing data to CSV to share with other tools

The CSV format is widely supported by mathematics, statistics, and spreadsheet
programs and offers an easy way to pass data back-and-forth between them and
NEURON.

In Python, we can use the csv module to read and write csv files.

Adding the following code after the continuerun in the example will create a file
data.csv containing the course data.

import csv
with open('data.csv', 'wb') as f:
csv.writer(f) .writerows(zip(t, v))

Each row in the file corresponds to one time point. The first column contains t
values; the second contains v values. Additional columns can be stored by adding
them after the t, v.

For more complicated data storage needs, consider the pandas or h5py modules.
Unlike csv, these must be installed separately.



For more information

For more background and a step-by-step guide to creating a network model, see
the NEURON + Python tutorial at:

http://neuron.yale.edu/neuron/static/docs/neuronpython /index.html

The NEURON Python programmer’s reference is available at:

http://neuron.yale.edu/neuron /static/py_doc/index.html

Ask questions on the NEURON forum:

http://neuron.yale.edu/phpbb



