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Hodgkin and Huxley: squid giant axon experiments

Top: Alan Lloyd Hodgkin;
Bottom: Andrew Fielding

Huxley. Images from Wikipedia.

Adapted from Pearson Education 2009.



Hodgkin and Huxley equations

Top: Alan Lloyd Hodgkin;
Bottom: Andrew Fielding

Huxley. Images from Wikipedia.

C
dV

dt
= −

(
gNam

3h(V − ENa) + gKn
4(V − EK ) + g`(V − E`)

)
dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

dn

dt
= αn(V )(1− n)− βn(V )n

Adapted from Hodgkin and Huxley 1952.



What does it mean?
Electronics 101



Current
Current is the movement of charge. In electronics, current is carried by the
movement of electrons. In neurons, current flows across the membrane by the
movement of ions. These ions can be positively or negatively charged.

Ca++Na+K+ Cl-



Resistors = Conductors

A resistor is a material that impedes current flow. This includes essentially all
materials. For those materials obeying Ohm’s law,

v = IR

where v is the voltage drop across the resistor, I is the current, and R is the
resistance (this may be constant or a function of time).

This may alternatively be written as

I = gV

where g = 1/R is the conductance.

Ion channels
Ion channels allow current to pass in the form of moving ions. They are therefore
resistors. The resistance varies over time.



Capacitors

A capacitor accumulates charge according to

CV = Q

where Q is the charge, V is the potential, and C is the capacitance.

The capacitive current is the rate at which charge is being stored on the current,
dQ/dt. Thus differentiating both sides of the above, we find

C
dV

dt
=

dQ

dt
= I .

Cell membrane
Charged ions accumulate along a neuron’s membrane. It is therefore a capacitor.



Kirchhoff’s Current Law
The algebraic sum of currents in a network of conductors meeting at a point is
zero.

I1 I2

I3 I4∑
k

Ik = 0.

Wording from https://en.wikipedia.org/wiki/Kirchhoff%27s circuit laws



Putting it together: the electronics of a neuron

Consider a simplified cell with
three currents:

I

C

V

R

i1

2i

3
i

By Kirchoff,

0 = i1 + i2 + i3

= −I + C
dV

dt
+ gV

Rearranging terms, we conclude:

C
dV

dt
= −gV + I .

The Hodgkin-Huxley equations account for a pull on ions due to the balance of chemical and electrical gradients. This approximately acts as a battery
with potential E associated with each resistor and leads to terms of the form g(V - E).



Solving a differential equation



Consider the differential equation

C
dV

dt
= −gV + I ,V (0) = V0

We can solve this for V (t) by
separation of variables:

dV

I − gV
=

dt

C∫
dV

I − gV
=

∫
dt

C
−1

g
ln |I − gV | =

t

C
+ c1

I − gV = c2e
−gt/C

Therefore,

V =
1

g

(
I − c2e

−gt/C
)
.

We can then solve for c2 by plugging
in V (0) = V0:

V0 =
1

g
(I − c2)

so
c2 = I − gV0

and thus

V =
1

g

(
I − (I − gV0)e−gt/C

)
.

Note: This is a lot of work and is only
possible because the equation is
simple. This type of equation appears
in leaky integrate and fire and is the
basis of the cnexp solver.

To solve general differential equations,
we must use numerical techniques.

Here we’re assuming g is a constant. This is not true for voltage gated ion channels.



In the Explicit Euler method, we
approximate

dy

dt
≈ ∆y

∆t

for some small time step ∆t and
estimate the function at a series of
time points. Here ∆yn = yn+1 − yn
and ∆tn = tn+1 − tn.

Then starting from some initial point
(t0, y0), we approximate dy

dt = f (t, y)

as ∆yn
∆tn

= f (tn, yn) and thus

∆yn = ∆tnf (tn, yn)

and therefore

yn+1 = yn + ∆tnf (tn, yn).
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Explicit Euler starts at a point, moves
in the direction of the tangent line
(slope dy/dt) for a time ∆t, then
repeats.



Explicit Euler is numerically unstable

If the time step in Explicit Euler is too large, the solution will be unstable:
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The Implicit Euler method is almost
the same as the Explicit Euler method
except instead of evaluating at
f (tn, yn), we evaluate at f (tn+1, yn+1).
That is,

yn+1 = yn + ∆tnf (tn+1, yn+1).

Note that yn+1 is on both sides, and
thus we have an algebraic equation
that must be solved to find yn+1.
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Implicit Euler finds a new point such
that if we moved in the direction of
the tangent line (slope dy/dt)
backward in time by ∆t, we would get
where we started.



Implicit Euler is numerically stable
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As Implicit Euler is numerically stable, it is NEURON’s default integration method.



Accuracy of Implicit Euler

Note that the solutions found with a small dt and a
large dt are different, even after the initial rapid
change.

One can prove that halving dt will approximately
halve the difference between the computed value
and the true value.

Thus Implicit Euler is a first order method. 0 0.2 0.4 0.6 0.8 1
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Error convergence estimates are true in the limit as dt → 0.



Crank-Nicolson is stable but can oscillate
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NEURON also supports the second-order Crank-Nicolson method
(h.secondorder=2). The solution is stable and converges faster than Implicit or
Explicit Euler, but it can exhibit oscillations.



If h.secondorder=2, then membrane potentials are second order correct at time
t, currents at t − dt/2, and channel conductances at t + dt/2. To plot these
correctly in NEURON, use a voltage axis, current axis, or state axis, respectively.

ẋ = −1.4xy , ẏ = −xy

Single iteration
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Variable time steps

So far, we have considered numerical error as a function of the time step dt. We
can instead choose an error tolerance and use that to pick a new dt at each time
step.

NEURON provides the CVode object for enabling variable step simulation.
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Incorporating space



ia

im

ia

ia

ia
x

∫
im =

∑
ia

cj
dvj
dt

+ ij =
∑
k

vk − vj
rjk
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Improving accuracy by increasing nseg

Improve accuracy by reducing the size of spatial compartments. In NEURON, do
this by increasing nseg, the number of segments:

nseg = 1

nseg = 2

nseg = 3

for sec in h.allsec():
    sec.nseg *= 3

Note that you must multiply nseg by an odd number to preserve the location of
the computed values, which is essential to testing convergence.



Trees can be solved stably in O(n)
Only unstable methods can solve arbitrary shapes in O(n)

To solve A∆y = b where y and b
have n entries (e.g. if we want to
solve for 4 variables at n/4 points)
takes time proportional to:

n3 via Gaussian Elimination

nlog2 7 via Strassen (1969)

n if A corresponds to a
“tree-matrix” (e.g. a neuron)
discretized in a certain way
(right).
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