
NetPyNE
(Networks	in	Python	and	NEURON)

A	Python	package	to	facilitate	the	
development,	simulation	and	analysis	of	
biological	neuronal	networks	in	NEURON

www.netpyne.org

• Facilitate	incorporation	of	experimental	data	at	multiple	scales

spiny stellates (ss). Their somata were located at depths
between 600 and 700 lm, 500 and 1000 lm, and 550 and 900
lm, respectively. L4py displayed a narrow apical tuft terminat-
ing in L1. In contrast, L4sp extended no further than L2 and
lacked an apical tuft. The L4ss lacked an apical dendrite
altogether.

Infragranular L5 contained 2 types of pyramidal neurons,
slender (st)- and thick-tufted (tt) pyramids (Wise and Jones
1977). The apical tuft dendrites of L5tt pyramids extended
beyond the tangential column borders, while those of L5st
pyramids did not. The somata of these 2 types intermingled
(1000--1300 lm and 1100--1400 lm), apart from ~100-lm thick
regions directly underneath L4 and above L6, which were
exclusively populated by L5st and L5tt pyramids, respectively.

Finally, the clustering identified 2 types of excitatory
neurons in L6. The 2 cell types differed in their soma locations
and dendrite morphology. Neurons of the first cell type were
located at depths between 1400 and 1600 lm and displayed
a short apical dendrite that lacked a tuft and terminated at the
border between L4 and 5. In contrast, neurons of the second
cell type extended apical dendrites into L4 that displayed
narrow tufts. In our sample, they were located deeper within
L6 at depths between 1550 and 1800 lm (with the exception
of one cell that was located within L5 [~1200-lm depth] but
otherwise showed the characteristic morphological features of
this cell type). The dendrite morphologies of the 2 cell types
resembled those of neurons which have previously been
classified by characteristic axon projection patterns into L6
corticocortical (cc) and corticothalmic (ct) pyramids (Kumar
and Ohana 2008). This naming convention was thus adopted
for the present study.

Cell Type--Specific 3D Distribution of Excitatory Somata in
a Barrel Column

To quantify the number of excitatory neurons per cell type in
a barrel column, we stained slices with NeuN to specifically
visualize the location of all neuron somata (Meyer, Wimmer,
Oberlaender, et al. 2010). Using 3D confocal microscopy and
automated soma detection software (Oberlaender, Dercksen,
et al. 2009), we obtained the number and 3D distribution of all

neuron somata within 9 barrel columns and their surrounding
septa (Supplementary Fig. S2). The average distribution of
inhibitory neurons in a cortical barrel column (Meyer et al.
2011) was subtracted from the distribution of all neurons. The
resultant average 3D distribution of excitatory somata was
combined with the above described vertical cell-type borders
(and overlaps) and previously reported dimensions of a cortical
barrel column (i.e., cylinder with 121 000 lm2 cross-sectional
area [Wimmer et al. 2010]). This combination allowed
subdividing the average excitatory soma distribution into 9
soma domains, which yielded the number and 3D locations of
excitatory somata for each cell type (Fig. 3A, Table 2). The
cylindrical shaped model column contained ~15 000 excitatory
somata in total and was referred to as the ‘‘soma column’’ (Fig. 3B).

Cell Type--Specific 3D Distribution of Excitatory Dendrites
in a Barrel Column

Next, somata were replaced by 3D soma--dendrite morpholo-
gies of the corresponding cell types (Fig. 3C). Reconstructed
morphologies were reregistered to their new location, and
orientation with respect to the vertical column axis was
preserved. Thus, even though the sample of reconstructed
dendrite morphologies was limited for each cell type, the
assembling process (Lang et al. 2011) guaranteed that dendrite
morphologies at any location in the model column (in silico)
resembled those that would be found at approximately the
same locations in a real column (in vivo).

The distribution of spines along the dendrites may be
location specific and cell-type specific (Romand et al. 2011).
However, as a first-order estimate, we assumed a constant and
uniform distribution of spines (i.e., 0.5 spines per 1-lm
dendrite) for each cell type (Larkman and Mason 1990) and
converted the 3D dendrite distribution into a 3D spine
distribution (Fig. 3D). While the soma distribution displayed
pronounced density peaks in cytoarchitectonic L4 and L6 (Fig.
3B), the spine distribution was more homogeneous along the
vertical column axis, reaching maximal densities in the center
of L4 (i.e., the barrel) and at the border between L1 and L2. The
latter reflected high densities of apical tufts from dendrites of
multiple cell types (i.e., L2, L3, L4py, L5st, L5tt).

Figure 2. Definition of excitatory cell types in a barrel column. Cluster analysis of morphological features identified 9 excitatory cell types. Registration allowed determining the
vertical extent of the cell type--specific soma locations (colored vertical bars). These cell-type borders were not sharp and complement cytoarchitectonic definitions of cortical
layers (e.g., using soma density as indicated by the horizontal dashed lines; adopted from Meyer, Wimmer, Oberlaender, et al. (2010). Some of the cell-type borders determined
here did not match cytoarchitectonic layer borders (e.g., L4 neurons may be located in cytoarchitectonic layers 3 and 5) and some cell types intermingled within layers (e.g., thick-
tufted and slender-tufted neurons in L5).

Thalamocortical Circuits in a Barrel Column d Oberlaender et al.2378

 at Bibliotheque Com
m

une D
e Chim

ieU
N

IL - EPFL on O
ctober 11, 2012

http://cercor.oxfordjournals.org/
D

ow
nloaded from

Motivation

• Facilitate	incorporation	of	experimental	data	at	multiple	scales

Long-range	inputs Local	microcircuits Dendritic	inputs

Motivation

• Separate	model	parameters	from	implementation

• Standardize	format	– easy	to	read,	interpret,	edit,	share	etc

popParams['EXC_L2'] = {
'cellType': 'PYR',
'yRange': [100, 400],
'numCells': 50}

for cellParams in range(pop['numCells']):
cell = sim.Cell(cellParams)
cell.tags[‘y’] = numpy.random(100,400)
cell.tags[‘cellType’] = ‘PYR’

Replicate:	get	same	thing	to	run	again

Reproduce:	make	it	youself

Motivation

• Facilitate	model	parallelization	(HPCs)	

• Batch	parameter	exploration/optimization

Motivation

NetPyNE

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

NEURON
cell models

NeuroML cell
and network

models

NetPyNE

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

Network instantiation Parallel Simulation

NEURON
simulator

Simulation results

NEURON
cell models

NeuroML cell
and network

models

Representation of all
cells, connections, etc

Distribution and
gathering across

MPI nodes

Spikes, voltage traces, …

NetPyNE

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

Network instantiation Parallel Simulation

NEURON
simulator

Simulation results

NEURON
cell models

NeuroML cell
and network

models

Representation of all
cells, connections, etc

Distribution and
gathering across

MPI nodes

Spikes, voltage traces, …

Analysis and saving

NeuroML
Brian, NEST,

MOOSE,
PyNN

Save to pickle, json,
mat, hdf5,…

Analysis and Visualization

Connectivity matrix, raster plot, …

Matlab,
Scipy,

Pandas,
Excel, …

Export to NeuroML
format

NetPyNE
Batch simulation module (parameter exploration, MPI/HPC job submission, etc)

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

Network instantiation Parallel Simulation

NEURON
simulator

Simulation results

NEURON
cell models

NeuroML cell
and network

models

Representation of all
cells, connections, etc

Distribution and
gathering across

MPI nodes

Spikes, voltage traces, …

Analysis and saving

NeuroML
Brian, NEST,

MOOSE,
PyNN

Save to pickle, json,
mat, hdf5,…

Analysis and Visualization

Connectivity matrix, raster plot, …

Matlab,
Scipy,

Pandas,
Excel, …

Export to NeuroML
format

NEURON

High level specifications

NEURON

NetPyNE

High level specifications

NEURON

NetPyNE

NetPyNE	GUI

High level specifications

q Specifications are provided in a standardized, declarative Python format (JSON-like, lists and dicts).

q Clear separation of parameters from implementation code.

q Error checking and suggestions to facilitate model definition.

High level specifications

connParams['bin3->CSP'] = {
'preConds': {'y': [100, 150]},
'postConds': {'pop': 'CSP'},
'probability': 0.15,
'weight': 0.4,
'delay': 5,
'synMech': 'AMPA'}

q User can define:

§ Populations: cell type, number of neurons or density, spatial extent, ...

§ Cell properties: Morphology, biophysics, implementation, …

§ Synaptic mechanisms: Time constants, reversal potential, implementation, …

§ Stimulation: Spike generators, current clamps, spatiotemporal properties, …

§ Connectivity rules: conditions of pre- and post-synaptic cells, different functions, …

§ Simulation configuration: duration, saving and analysis, graphical output, ...

High level specifications

net cells cells[0]

cells[1]

tags

secs

conns

stims

gid:	100

popLabel:	'L4'
cellType:	'PYR'

x:	100
…

soma

dend1

conns[0]

stims[0]

geom

topol

mechs

NEURON	
h.Section()

preGid:	0
sec:	'dend1'

…

NEURON	
hNetCon()

type:	'IClamp'
amp:	0.3

…

NEURON	
h.IClamp()

diam:	18
L:	18
...

hh

pas

gnabar:	0.12
gkbar:	0.036

…

Network instantiation
q Network instance as standardized hierarchical Python strucutre (JSON-like, lists and dicts)

Properties at all scales easy to access:

net.cells[5].secs.soma.mechs.hh.gnabar

Includes NEURON objects required for

simulation (removed when saving to file)

q Set up for MPI parallel simulation across multiple nodes (via NEURON simulator).

q Takes care of balanced distribution of cells and gathering of simulation output from nodes.

Parallel Simulation

§ Connectivity plots at cell or population level (weights, num connections, probability,...)

Analysis

plotConn(include = ['allCells'], feature='strength’,
groupBy='pop', figSize=(9,9), showFig=True)

§ 3D cell shape plot

§ Option to include color-coded variables (eg, num of synapses)

plotShape(…)

Analysis

q Simulation output

§ Intrinsic cell variables (voltages, currents, conductance) trace plots

§ Raster plot of any subset of cells

§ Spike histogram of populations or subsets of cells

§ Population statistics

Analysis

LFP
§ LFP time-series, PSD, spectrogram and electrode locations (single cell)

§ LFP time-series, PSD, spectrogram and electrode locations (network)

plotLFP(…)

Analysis

§ Spectral Granger causality

§ Normalized transfer entropy

plotGranger(…)

Analysis

q Easy specification of parameters and range of values to explore in batch simulations.

q Pre-defined, configurable setups to automatically submit jobs in multicore machines (Bulletin board)

or supercomputers (SLURM or PBS Torque)

Batch Parallel Simulations

q Analysis and visualization of multidimensional batch simulation results.

Batch Simulation Analysis

q Save and load high-level specifications, network instance, simulation config and/or simulation results.

q Multiple formats supported: pickle, Matlab, JSON, CSV, HDF5

q Export/import network instance to/from NeuroML, the standard format for neural models.

Data saving and exporting

PyNN

Import/export to standard format

Import/export to other simulators

Data saving and exporting

Development,	simulation	and	analysis	in	GUI
q Useful for:

1) Students/beginners

2) Prototypng model (can export to script)

3) Exploring/visualizing existing models

Development,	simulation	and	analysis	in	GUI

NetPyNE: Documentation and Tutorials
www.netpyne.org

https://groups.google.com/forum
/#!forum/netpyne-forum

https://www.neuron.yale.edu/phpBB/viewforum.php?f=
45&sid=99554ea5df10540d9b31e0c74929eaf0

NetPyNE: Q&A Forums

q Data-driven multiscale network model of M1 microcircuits

q Full scale cylindric volume of 300 μm (diameter) x 1350 μm (cortical depth)

q ~10,000 neurons of 5 classes distributed in 15 populations

q ~30M synapses

M1 microcircuits model

q Data-driven multiscale network model of M1 microcircuits

M1 microcircuits model

M1 microcircuits model

Connection strength

Po
st

sy
na

pt
ic

 N
CD

A C Main local and long-range excitatory connectionsE à IT

E à PT

E à CT

L1

L4

L2/3

L5A

L5B

L6

PT CT PO VL S1
S2

cM1
M2

OCIT

0.0

0.1

0.29

0.37

0.47

0.8

1.0

Po
st

sy
na

pt
ic

 N
CD

Co
nv

er
ge

nc
e

Presynaptic NCD

Long range input

B Long-range à IT Long-range à PT Long-range à CT

L4
L2/3

L5A

L5B

L6

E à IT

E à IT

L4

L2/3

L5A

L5B

L6

L4L2/3 L5A L5B L6 L4L2/3 L5A L5B L6

M1 microcircuits model

Human Neocortical Neurosolver

q Stephanie Jones (Brown University),
PI of NIH BRAIN R01

q Tool to reproduce/understand EEG/MEG
signals using biophysical circuit model

Human Neocortical Neurosolver

q Converted circuit model to NetPyNE

q Facilitate scaling, extension and customization

Potjan’s & Diesmann model

q ~80k neurons (point model in NMODL)

q ~300M synapses

q Converted to NetPyNE

q Executed on Google Cloud

Potjan’s & Diesmann model
NEST NetPyNE/NEURON NEST NetPyNE/NEURON

q Other models in progress:

§ Traub thalamocortical network (P. Gleeson, UCL / S. Crook, Arizona)

§ Hippocampus CA3 (B. Tessler, SUNY DMC)

§ Spinal cord circuits (V. Caggiano, IBM Watson)

§ Striatal microcircuits (Hanbing/Christina Weaver, Franklin and Marshall College)

§ V1 network (Vinicius/Antonio Roque, Sao Paulo University)

§ Cerebellum (Sergio Salines/Stefano Masoli, University of Pavia)

§ Dentate Gyrus (F. Rodriguez, SUNY DMC)

§ Ischemia in cortical network (Alex Seidenstein, SUNY DMC)

§ TMS/tDCS network (Aman Aberra, Duke University)

§ LFP oscillations (Christian Fink, Ohio Wesleyan)

§ Dendritic computations (Birgit Kriener, Oslo)

§ Thalamocortical epilepsy network (Andrew Knox, Cincinatti Hospital)

§ Full list of 43 models: https://drive.google.com/open?id=1bkWHakgZoEkYIkzrAS8sIKCvO5PSuUXLLRjNdN2pseY

NetPyNE: Existing models

NetPyNE: Acknowledgments
q Contributors:

§ Salvador Dura-Bernal (SUNY DMC)
§ Ben Suter (Northwestern)
§ Matteo Cantarelli (Metacell Ltd)
§ Adrian Quintana (EyeSeeTea Ltd)
§ Dario del Piano (Metacell Ltd)
§ Facundo Rodriguez (SUNY DMC)
§ Cliff Kerr (Sydney)
§ Padraig Gleeson (UCL)
§ Robert McDougal (Yale)
§ Michael Hines (Yale)
§ Gordon MG Shepherd (Northwestern)
§ William Lytton (SUNY DMC)

q Lab website: www.neurosimlab.org

q NetPyNE Website: www.netpyne.org

q NetPyNE-UI Website:
www.github.com/MetaCell/NetPyNE-UI

q Github: www.github.com/Neurosim-lab/netpyne
(open source development; contributions welcome)

q Funding:
§ NIH Grant U01EB017695
§ NIH Grant R01EB022903
§ NIH Grant R01MH086638
§ NYS Grant DOH01-C32250GG-3450000

PYTHON 3:

To install the the package run:

pip3 install netpyne_py3 (Linux or Mac OS) or
python -m pip install netpyne_py3 (Windows)

To upgrade to a new version run:

pip3 install netpyne_py3 -U (Linux or Mac OS) or
python -m pip install -U netpyne_py3 (Windows)

TO TEST:
In python interpreter type: from netpyne import sim

