Computational Neuroscience

Lab 11:
Evolutionary optimization of parameters

NEURON

for empirically-based simulations of neurons and networks of neurons

-\;“:
X

Instructor: Salvador Dura-Bernal

Overview

O Why do we need it? Examples:
= Single cell params
= Network firing rates
= Behavioral performance

O Approaches
= Hand tuning
= Brute force
= Search Algorithms

O Evolutionary algorithms

O Mutation rates and elites

O Optimizing the firing rate of a network

LParameter optimization/tuning/fitting

output = target? Yes = Finsih

No - Modify parameters

O Finding the optimum parameter values to achieve a target

d Target typically based on experimental data, e.g.:
= Single cell intrinsic properties (f-1 curve, ...)
= Network properties (firing rates, oscillations,...)
= Behavioral task (hand distance to target, ...)

O Parameters of model adjusted within realistic range, e.g.:
= Density of ionic channels
= Connection weights, background inputs
= Reinforcement learning interval

Parameter optimization: cell

Parameters: Capacitance, leak, Ra, and density of
channels HCN, Kd, Na, Kdr, Ka, Ca, KCa

Target: Firing rates (I-f curve), spike shape, subthreshold
voltage shape

50 ,
Experiment Simulation 40
20 |

T 11111 =
-10

W WMJMML -200 0 200 400 600

Current (pA)
— = j\%kwvm/ 1
e e
e ” xperiment

ulation

Firing rate (Hz)

Vm

Parameter optimization: network

Parameters: Connection weights and background input rate

Target: Avg firing rates, coefficient of variation, LFP spectra, PSTH

Radial distance (mm)

Average firing rates 1.4 Coefficients of variation Peristimulus time histograms
Rat #1

14 - ! ! - . 020 T T T T T T T
< (]
N 12} 1 =
L o 0.15 .
~ 10+ 41 2
9 o
o 8r 1 go.10 -
o 6f 1 ®©
£ 4t 4 E 0.05f 1
|- | =
= 21 7 2 \/\‘\\/\/\/\/\—N

L 1 L 1 -
0

- - — 0'0010 15 20 25 30 35 40 45 50
Experiment Simulation

Frequency (Hz)

Lateral distance (mm)

Lateral distance (mm)

Radial distance (mm)

Parameter optimization: behavior

Parameters: Training metaparameters (RL interval, exploratory movements, ...)

Target: Final distance to target, distance from ideal trajectory

Lateral distance (mm)

Lateral distance (mm)

56 — 20
4| 15
101
241
— _5¢
§ o8- 5
? Iy
8 g o
> >
)
2 08 i
< 5L
24 ol
-4t -15
-20
56 . i . . L L . "
-5.6 2.4 -0.8 08 24 4 -20 -15 -10 -5 0 5 10 15 20
hand x pos (cm) hand x pos (cm)
Firing rates ISI CV LFP power spectra
Power Spectrum
: 25 1 - -
E - ——Monkey Z
H 1 —Monkey A
£ H 2 : 08 — Model
] H t
| H
t : s : .
| i > | | ()
| | o | | 3
| | 2 | | o
| | 1 ‘ | |
‘ =[] os b
Monkey Z Monkey A Model o MorTié_ey z Moﬁ!(%y A Wel 0 10 20 30 40 50 60 70 80

f (Hz)

Parameter optimization

3 3 main approaches

= Hand tuning:
= Example: Purkinje cell (1994), 1 year of work
= Intelligent and focused but limited search of parameter sj

= Brute force
= |ncomplete or complete but sparse sampling
= Computation, storage and analysis challenges

= Search algorithms
= Find “best model” based on some fitness measure

= Many methods: gradient descent, simulated annealing, genetic/
evolutionary algorithms, ...

Evolutionary Algorithms

mm

Some individuals born happen to have longer necks due to
genetic differences.

Reproduction

‘ 2
3 W

Individuals pass on their traits to next generation.

Natural

selection
—_—

! A
- \O- e \o “. x- -

Over many generations, longer-necked individuals are more successful,
perhaps because they can feed on taller trees, and pass the long-neck
trait on to their offspring.

b. Darwin's theory: natural selection or genetically-based variation leads to
evolutionary change.

4 Evolutionary/genetic algorithms

Mimics biology: successive generations of a population become fitter

through selection, combined with mating and mutation.

S 0 D ™

0©0@ QO

Initial population 2 3

Fitness calculation
/ selection
1 generation

@ 2%
Mutatlon Reproduction®

(an or mating)/crossover

ﬁ Evolutionary algorithms

Evolutionary algorithms

How does an Evolutionary Algorithm (EA) work ?

Generation

Initiation of a
random population

Desired:

YES']

Initial fitness FINISHED!

evaluation Evaluation of the fitness
of each individual
(how good do they match the goal)

1. 2 3 .4 @5
Selection .
of parents Has a superior been created

that fulfills the specification?

7= @

Variation »
No! Only the fittest
* Crossover) are allowed to survive!
+ Mutation Select parents of

the next generation
(e.g. The three best)

Create the offspring Randomly mutate (perturb) q 72 3 4 5
population (crossover) the offspring generation @ @ @ @ @

Evaluation of the fitness
of each individual
(how good do they match the goal)

Fitness evaluation
of children

Replacement

Inspyred

inspyred: Bio-inspired Algorithms in Python

« Overview
. . . .] o Bio-inspired Computation
Python library for bio-inspired algorithms - Design Methodology
o Installation
o Getting Help
» Tutorial
1 H o The Rastrigin Function
Includes evolutionary algorithms and many Bl
= The Evaluator
Others = The Evolutionary Computation
o Evolving Polygons
= The Generator
. . R = The Evaluator
Each stage of the algorithm is customizable + The Bounder
= The Observer
= The Evolutionary Computation
. . o Lunar Explorer
http://pythonhosted.org/inspyred/index.html + Tne Genoraor
= The Evolutionary Computation
« Examples
1 . ! ! ! o Standard Algorithms
Installation: pip install inspyred ot Ao
= Evolution Strategy
= Simulated Annealing
= Differential Evolution Algorithm
= Estimation of Distribution Algorithm
= Pareto Archived Evolution Strategy (PAES)
= Nondominated Sorting Genetic Algorithm (NSGA-II)
= Particle Swarm Optimization
= Ant Colony Optimization
o Customized Algorithms
= Custom Evolutionary Computation
= Custom Archiver
= Custom Observer
= Custom Replacer
= Custom Selector
= Custom Terminator
= Custom Variator

ge

Inspyred

Generation
Initial fithess
evaluation

Selection of parents

Variation

*Crossover
* Mutation

Fitness evaluation
of children

Replacement

Problem-specific components

» A generator that defines how solutions are created

* An evaluator that defines how fitness values are calculated
for solutions

Algorithm-specific evolutionary operators

A terminator that determines whether the evolution should
end

A selector that determines which individuals should become
parents

A variator that determines how offspring are created from
existing individuals

A replacer that determines which individuals should survive
into the next generation

Inspyred example

Rastrigin example

gene/parameter 1

Inspyred example

Rastrigin example

The Rastrigin function is a non-convex
function used as a performance test
problem for optimization algorithms.

Finding the minimum of this function is
a fairly difficult problem due to its large
search space and its large number of
local minima.

Fitness function:

Minimize

107 + Y (G — 1)* = 10 cos(2r(x; — 1))) o

i=1

forx; € [-5.12,5.12].

/ Local minima

Parameters: x, , X,

Global minimum at [0 0]

Optimization Example

rand = Random()
rand.seed(int(time()))

my _ec = ec.EvolutionaryComputation(rand)

» Create evolutionary computation object that encapsulates the components of a
generic evolutionary computation.

« These components are the selection mechanism, the variation operators, the
replacement mechanism, the terminators, and the s.

« Requires random value since needs to generate random crossover and
mutations

Optimization Example

ny_ec.selector = ec.selectors.tournament_selection

Terms: Selection

« Select which parents will reproduce

inspyred.ec.selectors.uniform_selection(random, population, args)
Return a uniform sampling of individuals from the population.

This function performs uniform selection by randomly choosing members of the population with replacement
Optional keyword arguments in args:
» num_selected — the number of individuals to be selected (default 1)
inspyred.ec.selectors.tournament_selection(random, population, args) |
Return a tournament sampling of individuals from the population.

This function selects num_selected individuals from the population. It selects each one by using random sampling without replacement to pull tournament_size individuals
and adds the best of the tournament as its selection. If tournament_size is greater than the population size, the population size is used instead as the size of the tournament.

Optional keyword arguments in args:

» num_selected — the number of individuals to be selected (default 1)
« tournament_size — the tournament size (default 2)

inspyred.ec.selectors. truncation_selection(random, population, args)
Selects the best individuals from the population.

This function performs truncation selection, which means that only the best individuals from the current population are selected. This is a completely deterministic selection
mechanism.

Optional keyword arguments in args:

« num_selected — the number of individuals to be selected (default len(population))

Optimization Example

my_ec.variator = [ec.variators.uniform_crossover,
ec.variators.gaussian_mutation] o
_— Terms: Crossover/Recombination

O
Y/

« Select variations to apply during reproduction (crossover+mutatio

inspyred.ec.variators.uniform_crossover(random, candidates, args) |
Return the offspring of uniform crossover on the candidates.

This function performs uniform crossover (UX). For each element of the parents, a biased coin is flipped to determine whether the first offspring gets the ‘mom’ or the ‘dad’ element. An

optional keyword argument in args, ux_bias, determines the bias.

Optional keyword arguments in args:

« crossover_rate — the rate at which crossover is performed (default 1.0)
« ux_bias — the bias toward the first candidate in the crossover (default 0.5)

inspyred.ec.variators.n_point_crossover(random, candidates, args)
Return the offspring of n-point crossover on the candidates.

This function performs n-point crossover (NPX). It selects n random points without replacement at which to ‘cut’ the candidate solutions and recombine them.

Optional keyword arguments in args:

« crossover_rate — the rate at which crossover is performed (default 1.0)
e num_crossover_points — the number of crossover points used (default 1)

Optimization Example

my_ec.variator = [ec.variators.uniform_crossover,
ec.variators.gaussian_mutation] Terms: Mutation

« Select variations to apply during reproduction
(crossover+mutation)

inspyred.ec.variators.gaussian_mutation(random, candidates, args)
Return the mutants created by Gaussian mutation on the candidates.

This function performs Gaussian mutation. This function makes use of the bounder function as specified in the EC’s evolve method.
Optional keyword arguments in args:

» mutation_rate — the rate at which mutation is performed (default 0.1)
« gaussian_mean — the mean used in the Gaussian function (default 0)
 gaussian_stdev — the standard deviation used in the Gaussian function (default 1)

The mutation rate is applied on an element by element basis.

inspyred.ec.variators.scramble_mutation(random, candidates, args)
Return the mutants created by scramble mutation on the candidates.

This function performs scramble mutation. It randomly chooses two locations along the candidate and scrambles the values within that slice.
Optional keyword arguments in args:

« mutation_rate — the rate at which mutation is performed (default 0.1)

The mutation rate is applied to the candidate as a whole (i.e., it either mutates or it does not, based on the rate).

Optimization Example

ny_ec.replacer = ec.replacers.steady state_replacement

Terms: Replacement

« Select what set of parents and children to
keep for next generation

1
Parents:

Children: | |

inspyred.ec.replacers.steady_state_replacement(random, population, parents, offspring, args)
Performs steady-state replacement for the offspring.

This function performs steady-state replacement, which means that the offspring replace the least fit individuals in the existing population, even if those offspring are less fit than the
individuals that they replace.

inspyred.ec.replacers.generational_replacement(random, population, parents, offspring, args)
Performs generational replacement with optional weak elitism.

This function performs generational replacement, which means that the entire existing population is replaced by the offspring, truncating to the population size if the number of offspring
is larger. Weak elitism may also be specified through the num_elites keyword argument in args. If this is used, the best num_elites individuals in the current population are allowed to
survive if they are better than the worst num_elites offspring.

Optional keyword arguments in args:

« num_elites — number of elites to consider (default 0)

Optimization Example

ny_ec.terminator = ec.terminators.evaluation_termination

« Select criteria to stop evolutionary
optimization

inspyred.ec.terminators.evaluation_termination(population, num_generations, num_evaluations, args)
Return True if the number of function evaluations meets or exceeds a maximum.

This function compares the number of function evaluations that have been generated with a specified maximum. It returns True if the maximum is met or exceeded.
Optional keyword arguments in args:

« max_evaluations — the maximum candidate solution evaluations (default len(population))

inspyred.ec.terminators.generation_termination(population, num_generations, num_evaluations, args)
Return True if the number of generations meets or exceeds a maximum.

This function compares the number of generations with a specified maximum. It returns True if the maximum is met or exceeded.
Optional keyword arguments in args:

* max_generations — the maximum generations (default 1)

Optimization Example

| =l Generation Evaluation Worst Best Median Average Std Dev

my_ec.observer = [ec.observers.stats_observer, — oo o

ec.observers.plot_observer, Best In:zjiduah ::a:z:;::ii:::s:szge?:zsjs:Z:ZZ5:]472:2:::719::::23
ec.observers.best_observer])
" =]
« Select what information to observe/display o o
during the evolutionary computations &

0 200 400 600 800 1000
Evaluations

inspyred.ec.observers.stats_observer(population, num_generations, num_evaluations, args)
Print the statistics of the evolutionary computation to the screen.

This function displays the statistics of the evolutionary computation to the screen. The output includes the generation number, the current number of evaluations, the maximum fitness,
the minimum fitness, the average fitness, and the standard deviation.

inspyred.ec.observers.best_observer(population, num_generations, num_evaluations, args)
Print the best individual in the population to the screen.

This function displays the best individual in the population to the screen.

inspyred.ec.observers.plot_observer(population, num_generations, num_evaluations, args)
Plot the output of the evolutionary computation as a graph.

This function plots the performance of the EC as a line graph using the pylab library (matplotlib) and numpy. The graph consists of a blue line representing the best fitness, a green line
representing the average fitness, and a red line representing the median fitness. It modifies the keyword arguments variable ‘args’ by including an entry called ‘plot_data’.

Optimization Example

Final pop = my ec.evolve(generator=generate rastrigin,
evaluator=evaluate_rastrigin,
pop_size=100,
maximize=False,
bounder=ec.Bounder(-5.12, 5.12),
max_evaluations=1000,
num_selected=2,
mutation rate=0.25,
num_inputs=2)

» Select prpperties of evolutionary algorithm

average | |
median
best

worst]

Fitness

0 200 400 600 800 1000
Evaluations

Understanding population size

Start from lab10_optim1.py (Rastrigin example) make the following changes:

1) Change the population size (pop_size) from 100 to a) 10 individual and b) 500 individuals -- what effect does
it have?

Note 1: Population size is constant through generations, but only new individuals need to be evaluated; ie. all
individuals are evaluated once at the beginning, but after that only offspring.

Note 2: The number of new individuals (offspring) in each generation is determined by the parameter
num_selected (the number of offspring will be equal to the number of individuals selected for reproduction, ie. 1
child / parent -- not completely intuitive but that's how it works)

pop_size

Fitness

o

— average || 120

pOpSIZe=1 O : :e(:ian pOpS|Ze=1 OO : ::’:(;;S:]e
— wi)srst 1004 -
| — worst
80

A numm L

or

W\W i A W Ml “ | | ; |

1000
0 200 400 600 800 1000

Evaluations

o

O Why is ‘worst’ higher at start in 100

' Popsize=500 — meden |
P — e and 5007
— worst 1

O Why is ‘best’ lower at start in 5007

O Why is 10 faster to converge?

200 400 600 800 1000

Understanding selection

2) Using pop_size=100, change the number of individuals selected for reproduction (num_selected) from 2 to
a) 20and

b) b)100
What is the effect?

How would the graph look if the x-axis showed num generations instead of evaluations?

num_selected

= num sel=2 — average |
_ — median
100} — best
— worst
80 [
&
o 60 [
E
40
20 [
0» ‘_\——_\i
200 400 600 800 1000
Evaluations
— — average
|n m_sel=350 |
— best
— worst
80
@ 60[
2
E
407
201 1
of .
0 200 400 600 800

Evaluations

1000

120 | — — average |
num_sel=20 | — e
oo\ — best
— worst
80
173
2 60
E
40 [
20
ol
0 2(I)0 4(;0 6(;0 860 1000

Evaluations

O Why do the ‘worst’ lines look so
different?

O How would the graph look if x-axis
was Generations ?

(hint: write down the total number of
generations in each case)

Understanding mutation

—
3) Using pop_size=100 and num_selected=2, remove the gaussian_mutation variator.
What is the effect in convergence?

How does the final fitness solution compare to previous ones?

a) What happens if you now reduce pop_size=107?

b) Using pop_size=10, num_selected=10, put back the gaussian_mutation variator; and test the following 3
mutation_rate values: 0, 0.1 and 2 -- what’s going on?

Note: This example should highlight the importance of mutation.

mutation

Fitness

Fitness

o mutation | No mutation| — mean
100 [— best — best
— worst 100 [— worst
80
80
60 é
iC 60
40|
40
20
‘____\i 20 [
o _‘__\
Q o0 e . P e % 200 400 _ 600 800 1000
Evaluations Evaluations
. . ~— average| d What is the effect in convergence?
*|No mutation, popsize=10- medan 9
8011 — \?V(:)Srlt
°l ' O How does the final fithess solution
& ‘ compare?
50 [
40 - |
L\\ O Why is the effect stronger for smaller
30])
pop size?
200 260 460 6(;0 8(I)0 1000

Evaluations

mutation rate

Fitness

120 mut_rate — 01 — average | |
— median
100 [- beSl
— worst
80 [
1]
2 60
E
401
20 /\W
ot
0 200 400 600 800 1000
Evaluations
100 mut rate =0 — average |
— — median
— best
— worst
80 [
60
401
20
0 200 400 600 800 1000

Evaluations

100 — aememut_rate = 2
— median -
— best

80| — worst

M

20|

Fitness

0 200 400 600 800 1000
Evaluations

O Why doesn’t the mut_rate=2
converge/decrease?

O What happens when mut_rate=07?

Understanding elites

4) Using pop_size=20 and num_selected=20, mutation_rate=0.1, change the current survivor
replacement method (steady_state replacement) for the generational replacement method (
http://pythonhosted.org/inspyred/reference.html#replacers-survivor-replacement-methods)

Add the argument num_elites=0 to the function call my_ec.evolve(...). Compare the output for the
following values of num_elites: 0, 1 and 20.

What's the effect? Notice any difference between 0 and 17?

Note: the best num_elites individuals in the current population are allowed to survive if they are better
than the worst num_elites offspring.

num elites

Fitness

elites = 20 — average |
— median
— best
80 — worst
60 [
40
20
\\
ol
0 200 400 600 800 1000
Evaluations
H —_ — average
elites = 1 oo
80 — best
— worst
60 [
]
E
L 40
20
of

200 400 600

Evaluations

800 1000

100 [— average ||
elites =0 — Mmedian
— best
80 — worst
60 [
I
2
:‘lf
401
20
ot
0 260 460 660 860

Evaluations

O Why doesn’t ‘worst’ line increase with

20 elites?

O Difference between ‘best’ line of O vs

1 elites?

1000

Network optimization

O Aim: optimize the network connectivity parameters to obtain a specific
firing rate in the tut2.py example.

O Parameters: .
= Probability (S->M conns):-
= Weight (S->M conns)
= Delay (S->M conns)

mmmmmmmm

O Target (fitness measure): mean firing rate per cell (eg. 17 Hz)

How to calculate fithess function? Minimize of maximize?

Network optimization

O Aim: optimize the network connectivity parameters to obtain a specific
firing rate in the tut2.py example.

O Parameters: .
= Probability (S->M conns):-
= Weight (S->M conns)
= Delay (S->M conns)

mmmmmmmm

O Target (fitness measure): mean firing rate per cell (eg. 17 Hz)

Fitness = | target rate — actual rate | (minimize!)

Network optlmlzat on

Initial population with

Generation random parameters

Initial fithess
evaluation

Selection of parents

Variation

*Crossover
* Mutation

Fitness evaluation Calculate fitness (firing rate)

‘Fitness ="|17-15| g

of children of each individual (network)

Replacement

fltness

| ‘

Prob=0.05
Weight=0.1
Delay=6

fitness=|17-10|=7

Prob=0.05
Weight=0.1
Delay=6
Rate=10

|17-20| =3

Network optimization

m1) We will use the network model in tut2.py but need to change the following things:

- Since we are going to run the model many times for each generation of the evolutionary algorithm, we don’t want plots showing up for
each one.

Therefore, change the simConfig options so that NO plots are generated (set plotting of raster, cells, and 2d map to False) —

- Remove the createSimulateAnalyze() call from the end of the file — we will decide when to run the model from the optimization algorithm

- Change the duration of the simulation to 0.5 sec — since we are going to run the model many times we need to make it a bit faster

2) Now lets adapt the parameter optimization code. Start from lab10_optim1.py save as lab10_optim2.py. We will begin by changing the
fithess evaluation function, so it creates and runs the neural network:

- add import tut2 so we can use the network we defined there

- add from netpyne import sim so we can use netpyne to run the network

- Replace the function evaluate_rastrigin with evaluate_netparams, which should:
Create an empty list called fithessCandidates
for each candidate create and simulate the tut2 network
calcualte a fitness value for each candidate — for now just set this to a fixed value of 1 (we’ll fix later)
Add the fitness if each candidate value to fitnessCandidates

3) In the optimizaiton algorithm options set in my_ec.evolve, modify the following:
- Set evaluator=evaluate _netparams so we make use of the newly defined fitness evaluator functions

- Set pop_size=10, max_evaluations=50, num_selected=10, mutation rate=0.2

Network optimization

Creating simulation of 3 cell populations for 8.5 s on 1 hosts...

Number of cells on node @: 40

Done; cell creation time = 9.00 s.
Making connections...

Number of connections on node ©: 197

Done; cell connection time = 0.01 s.

Running...
Done; run time = ©.33 s; real-time ratio: 1.51.

Gathering spikes...
Done; gather time = 0.00 s.

Analyzing...
Run time: ©.33 s
Simulated time: ©-s; 40 cells; 1 workers
Spikes: 441 (22.05 Hz)
Connections: 197 (4.92 per cell)
Done; plotting time = 0.00 s

Total time = 0.34 s
Generation Evaluation Worst Best Median

Best Individual: [1.1721428848721431, -5.12] : 1

/u/salvadord/anaconda/1lib/python2.7/site-packages/matplotlib/axes.py:2760: UserWarning:

Attempting to set identical bottom==top results
in singular transformations; automatically expanding.
bottom=1.0, top=1.0

+ 'bottom=%s, top=%s') % (bottom, top))

Average Std Dev

10010 - - - T
— average
— median
10005 | — best 8
— worst
@
L -
g 10000
w
0.9995 8
0.9990 - - -
0 10 20 30 40 50

Evaluations

What are we missing??

Network optimization

Creating simulation of 3 cell populations for 8.5 s on 1 hosts...

Number of cells on node @: 40

Done; cell creation time = 9.00 s.
Making connections...

Number of connections on node ©: 197

Done; cell connection time = 0.01 s.

Running...
Done; run time = 0.33 s; real-time ratio: 1.51.

Gathering spikes...
Done; gather time = 0.00 s.

Analyzing...
Run time: ©.33 s
Simulated time: ©-s; 4@ cells; 1 workers
Spikes: 441 (22.05 Hz)
Connections: 197 (4.92 per cell)
Done; plotting time = 0.00 s

Total time = 0.34 s

Generation Evaluation Worst Best Median

Average

Std Dev

Best Individual: [1.1721428848721431, -5.12] : 1

/u/salvadord/anaconda/1lib/python2.7/site-packages/matplotlib/axes.py:2760: UserWarning:

Attempting to set identical bottom==top results
in singular transformations; automatically expanding.
bottom=1.0, top=1.0

+ 'bottom=%s, top=%s') % (bottom, top))

10010 - - - T
— average
— median
10005 | — best
— worst
g
g 10000 |
w
0.9995
0.9990 - - -
0 10 20 30 40 50

Evaluations

What are we missing??

Generate initial population
with value within range

Modify the network
parameters based on
individual evaluated

Calculate fitness function
correctly

Network optimization

EB"In the main code, add a variable targetFiring to store the average target firing rate we want to obtain in the network, and set it to 18 Hz.

2) Add the minimum and maximum values for each of the 3 parameters (probability, weight and delay). These are needed during the
generation of the initial population, and during the crossover and mutation phases — to make sure the genes of new children are within the
allowed range:

- Create a list minParamValues to store minimum allowed values: 0.01 (for probability), 0.001 (for weight) and 1 (for delay)

- Create a list maxParamValues to store minimum allowed values: 0.5 (for probability), 0.1 (for weight) and 20 (for delay)

3) Replace the rastrigin generation function with generate _netparams using the following code:

def generate_netparams(random, args):
size = args.get('num_inputs')
initialParams = [random.uniform(minParamValues[i], maxParamValues[i]) for i in range(size)]

return initialParams

Make sure you also select it in the main code: generator=generate_netparams

4) Modify the bounder (which makes sure parameter values are within the allowed range) so it makes use of the newly define parameter
values: bounder=ec.Bounder(minParamValues, maxParamValues) ; and modify the number of inputs to 3: num_inputs=3

5) Modify the tut2 network parameters (prob, weight,delay) before creating and simulating it. The parameter values (prob,weight,delay) for
each new candidate/child are stored in the list cand:

- the probability values can be accessed via tut2.netParams.connParams]['S->M'][['/probability'] and should be set to cand/[0]
- the probability values can be accessed via tut2.netParams.connParams['S->M'[['weight'] and should be set to cand[1]

- the probability values can be accessed via tut2.netParams.connParams['S->M'[['delay’] and should be set to cand[2]

Network optimization

6) Calculate the firing rate of the network and fithess of each individual:

Calculate the number of spikes, by finding the length of the list containing all the spike times: sim.simData['spkt']
Calculate the number of cells, by finding the length of the list contianing all the spike times: sim.net.cells
Calculate the sim duration in seconds, using the tut2.simConfig.duration (which gives the duration in ms)

Make sure the above values are stored as floats not integers (ie. can have decimals) — to convert any value to a float use the
float(value) function

Calculate the average network firing rate of the network by dividing the number of spikes, by the number of cells and the duration.

Calculate the fitness value for this candidate as the absolute difference (use abs()) between the target firing rate (use the variable we
defined in prev section) and the network firing rate (just calculated above)

Store the candidate’s fitness value in the list fithnessCandidates

7) For each candidate, print a message showing the candidate number (icand), the 3 parameter values of the candidate (prob, weight,
delay), the firing rate of the resulting candidate network, and the fithess value of the candidate network, eg.

CHILD/CANDIDATE 9: Network with prob:0.01, weight:0.00, delay:10.5

firing rate: 9.1, FITNESS = 8.95

Network optimization

Fitness

Creating simulation of 3 cell populations for .5 s on 1 hosts
Number of cells on node 0: 40
Done; cell creation time = 0.00 s.
Making connections... 2
Number of connections on node 0: 1
Done; cell connection time = 0.00 s.

Running...
Done; run time = 0.34 s; real-time ratio: 1.45. 0

Gathering spikes...
Done; gather time = 0.00 s.

Analyzing...
Run time: 0.34 s
Simulated time: ©-s; 4@ cells; 1 workers
Spikes: 181 (9.05 Hz)
Connections: 1 (0.3 per cell)
Done; plotting time = .00 s

Total time = 0.35 s

CHILD/CANDIDATE 9: Network with prob:0.01, weight:0.00, delay:10.5
firing rate: 9.1, FITNESS = 8.95

Generation Evaluation Worst Best Median Average Std Dev

4 50 2.1 0.3 0.55 0.76 0.53329166

Best Individual: [0.27529211166881334, 0.06583998948192707, 18.171594793221356] : 0.3

average
median
best

worst

Evaluations

Network Optimization

8) Lets now check how the network with the optimized parameters found by the evolutionary algorithm
looks! At the end of the main code, add the following:

- store in bestCand the parameters of the best individual (optimum solution) using the following code:
final_pop.sort(reverse=True)
bestCand = final_pop[0].candidate

- Set the tut2 network parameters to those in bestCand (same as inside the evaluation function)

- Set the tut2 option to plot the raster: tut2.simConfig[plotRaster'] = True

- Create and simulate the tut2 network 0] cells=40 Isyns/cell=2.7<£ate‘=17.7 Hz >

\—/

10+
15

20 -

Cell id

251

35f

0 100 200 300
Time (ms)

400

500

Network optimization (Assessment)

T Start from lab10_optim2.py and replace the fitness function so that instead of the target being the average firing rate, the
target is now to maximize spike synchrony (ie. the synchrony of spikes of the different cells in the network):
. Add the following generic function to calculate spike synchrony.
def syncMeasure(spikeTimes, duration):
to=-1
width=1
cnt=0
for spkt in spikeTimes:
if (spkt>=to+width):
to=spkt
cnt+=1
return 1-cnt/(duration/width)

. Modify the fitness evaluator function so that the fitness value for each candidate is equivalent to the synchrony of
the network. Note you will need to use the syncMeasure above and pass the appropriate params: a list with the

spike times of the network, and the duration of the simulation (you can find how to obtain both values looking at the
previous examples)

. Since we want to maximize the synchrony of the network, make sure that the relevant evolutionary computation
options is set to try to maximize the fitness (and not minimize it as before).

. Modify tut2.py so that you plot synchrony bars and the synchrony value for the network: simConfig[plotSync'] = True

2) Replace the delay parameter (currently one of the 3 being optimized) with the decay time constant (tau2) of the network
synaptic mechanism. Use the previous examples to figure out how to access this parameter in tut2. Set the min and max
allowed values for this new parameter to 2 and 9.

3) Change the print statement for each candidate to reflect the above changes.

4) Replace the current tournament selection selector with truncation selection (only best individuals are selected).

Network optimization (Ass

CHILD/CANDIDATE 8: Network with prob:0.12, weight:0.05, tau2:5.5
sync: ©.71, FITNESS = 0.71

Creating simulation of 3 cell populations for 0.5 s on 1 hosts...
Number of cells on node @: 40
Done; cell creation time = .00 s.
Making connections...
Number of connections on node 9: 143
Done; cell connection time = 0.01 s.

Running...
Done; run time = 0.09 s; real-time ratio: 5.38.

Gathering spikes...
Done; gather time = 0.00 s.

Analyzing...
Run time: 0.09 s
Simulated time: ©-s; 40 cells; 1 workers
Spikes: 473 (23.65 Hz)
Connections: 143 (3.58 per cell)
Done; plotting time = 0.00 s

Total time = 0.11 s
CHILD/CANDIDATE 9: Network with prob:0.36, weight:0.04, tau2:2.2

sync: 0.70, FITNESS = 0.70
Generation Evaluation Worst Best Median Average

Std Dev

4 50 0.706 0.804 0.75 0.7546 0.03292476

Best Individual: [0.5, 0.1, 8.344059017154711] : 0.804

0.80

0.78

0.76

0.74

0.72

0.70

essment)

average
median
best
worst

T

1

T T

1 1

10

20 30 40 50
Evaluations

10

15+

20

35

cells=40 syns/cell=4.9 rate=7.4 Hz sync=0.80

100

300 400 500

