

Computational Neuroscience

Lab	
 11:	

Evolu,onary	
 op,miza,on	
 of	
 parameters	

	

	

	

	

	

	

	

Instructor:	
 Salvador	
 Dura-­‐Bernal
	

Overview
q  Why do we need it? Examples:

n  Single cell params
n  Network firing rates
n  Behavioral performance

q  Approaches
n  Hand tuning
n  Brute force
n  Search Algorithms

q  Evolutionary algorithms

q  Mutation rates and elites

q  Optimizing the firing rate of a network

Parameter optimization/tuning/fitting

q  Finding the optimum parameter values to achieve a target

q  Target typically based on experimental data, e.g.:
n  Single cell intrinsic properties (f-I curve, …)
n  Network properties (firing rates, oscillations,…)
n  Behavioral task (hand distance to target, …)

q  Parameters of model adjusted within realistic range, e.g.:
n  Density of ionic channels
n  Connection weights, background inputs
n  Reinforcement learning interval

Model
output = target? Yes à Finsih

No à Modify parameters

Parameter optimization: cell
Parameters: Capacitance, leak, Ra, and density of
channels HCN, Kd, Na, Kdr, Ka, Ca, KCa

Target: Firing rates (I-f curve), spike shape, subthreshold
voltage shape

Parameter optimization: network
Parameters: Connection weights and background input rate

Target: Avg firing rates, coefficient of variation, LFP spectra, PSTH

Parameter optimization: behavior

L2/3

L5

L6

Parameters: Training metaparameters (RL interval, exploratory movements, …)

Target: Final distance to target, distance from ideal trajectory

Firing&rates& ISI&CV& LFP&power&spectra&

Parameter optimization

q  3 main approaches
n  Hand tuning:

n  Example: Purkinje cell (1994), 1 year of work
n  Intelligent and focused but limited search of parameter space

n  Brute force
n  Incomplete or complete but sparse sampling
n  Computation, storage and analysis challenges

n  Search algorithms

n  Find “best model” based on some fitness measure
n  Many methods: gradient descent, simulated annealing, genetic/

evolutionary algorithms, …

Evolutionary Algorithms

Evolutionary/genetic algorithms

/crossover

Evolutionary algorithms

Crossover

Children

Evolutionary algorithms
Generation

Initial fitness
evaluation

Selection
 of parents

Variation
• Crossover
• Mutation

Fitness evaluation
of children

Replacement

New
generation

Inspyred

•  Python library for bio-inspired algorithms

•  Includes evolutionary algorithms and many
others

•  Each stage of the algorithm is customizable

•  http://pythonhosted.org/inspyred/index.html

•  Installation: pip install inspyred

Inspyred
Generation

Initial fitness
evaluation

Selection of parents

Variation
• Crossover
• Mutation

Fitness evaluation
of children

Replacement

New
generation

Problem-specific components

•  A generator that defines how solutions are created

•  An evaluator that defines how fitness values are calculated

for solutions

Algorithm-specific evolutionary operators

•  A terminator that determines whether the evolution should

end

•  A selector that determines which individuals should become
parents

•  A variator that determines how offspring are created from
existing individuals

•  A replacer that determines which individuals should survive
into the next generation

Inspyred example
q Rastrigin example

gene/parameter 1
gene/parameter 2

Fitness function (minimize)

Inspyred example
q Rastrigin example

The Rastrigin function is a non-convex
function used as a performance test
problem for optimization algorithms.

Finding the minimum of this function is
a fairly difficult problem due to its large
search space and its large number of
local minima.

Fitness function:

Parameters: x1 , x2

Optimization Example

•  Create evolutionary computation object that encapsulates the components of a
generic evolutionary computation.

•  These components are the selection mechanism, the variation operators, the
replacement mechanism, the terminators, and the s.

•  Requires random value since needs to generate random crossover and

mutations

Optimization Example

•  Select which parents will reproduce

Optimization Example

•  Select variations to apply during reproduction (crossover+mutation)

Optimization Example

•  Select variations to apply during reproduction
(crossover+mutation)

Optimization Example

•  Select what set of parents and children to
keep for next generation

Optimization Example

•  Select criteria to stop evolutionary
optimization

Optimization Example

•  Select what information to observe/display
during the evolutionary computations

Optimization Example

•  Select prpperties of evolutionary algorithm

Understanding population size

Start from lab10_optim1.py (Rastrigin example) make the following changes:

1)  Change the population size (pop_size) from 100 to a) 10 individual and b) 500 individuals -- what effect does

it have?

Note 1: Population size is constant through generations, but only new individuals need to be evaluated; ie. all
individuals are evaluated once at the beginning, but after that only offspring.

Note 2: The number of new individuals (offspring) in each generation is determined by the parameter
num_selected (the number of offspring will be equal to the number of individuals selected for reproduction, ie. 1
child / parent -- not completely intuitive but that’s how it works)

pop_size

q  Why is ‘worst’ higher at start in 100
and 500?

q  Why is ‘best’ lower at start in 500?

q  Why is 10 faster to converge?

popsize=10

Popsize=500

popsize=100

Understanding selection

2) Using pop_size=100, change the number of individuals selected for reproduction (num_selected) from 2 to
a)  20 and
b)  b) 100

What is the effect?

How would the graph look if the x-axis showed num generations instead of evaluations?

num_selected

q  Why do the ‘worst’ lines look so
different?

q  How would the graph look if x-axis
was Generations ?

 (hint: write down the total number of
 generations in each case)

num_sel=2

num_sel=50

num_sel=20

Understanding mutation

3) Using pop_size=100 and num_selected=2, remove the gaussian_mutation variator.

What is the effect in convergence?

How does the final fitness solution compare to previous ones?

a)  What happens if you now reduce pop_size=10?

b)  Using pop_size=10, num_selected=10, put back the gaussian_mutation variator; and test the following 3
mutation_rate values: 0, 0.1 and 2 -- what’s going on?

Note: This example should highlight the importance of mutation.

mutation

q  What is the effect in convergence?

q  How does the final fitness solution
compare?

q  Why is the effect stronger for smaller
pop size?

mutation

No mutation, popsize=10

No mutation

mutation rate

q  Why doesn’t the mut_rate=2
converge/decrease?

q  What happens when mut_rate=0?

mut_rate = 0.1

mut_rate = 0

mut_rate = 2

Understanding elites
4) Using pop_size=20 and num_selected=20, mutation_rate=0.1, change the current survivor
replacement method (steady_state_replacement) for the generational replacement method (
http://pythonhosted.org/inspyred/reference.html#replacers-survivor-replacement-methods)

Add the argument num_elites=0 to the function call my_ec.evolve(...). Compare the output for the
following values of num_elites: 0, 1 and 20.

What’s the effect? Notice any difference between 0 and 1?

Note: the best num_elites individuals in the current population are allowed to survive if they are better
than the worst num_elites offspring.

num elites

q  Why doesn’t ‘worst’ line increase with
20 elites?

q  Difference between ‘best’ line of 0 vs
1 elites?

elites = 20

elites = 1

elites = 0

Network optimization
q  Aim: optimize the network connectivity parameters to obtain a specific

firing rate in the tut2.py example.

q  Parameters:
n  Probability (S->M conns)
n  Weight (S->M conns)
n  Delay (S->M conns)

q  Target (fitness measure): mean firing rate per cell (eg. 17 Hz)

How to calculate fitness function? Minimize of maximize?

Network optimization
q  Aim: optimize the network connectivity parameters to obtain a specific

firing rate in the tut2.py example.

q  Parameters:
n  Probability (S->M conns)
n  Weight (S->M conns)
n  Delay (S->M conns)

q  Target (fitness measure): mean firing rate per cell (eg. 17 Hz)

Fitness = | target rate – actual rate | (minimize!)

Generation

Initial fitness
evaluation

Selection of parents

Variation
• Crossover
• Mutation

Fitness evaluation
of children

Replacement

Network optimization
Initial population with
random parameters Prob=0.1

Weight=0.2
Delay=4 Prob=0.05

Weight=0.1
Delay=6

Prob=0.3
Weight=0.03

Delay=9

Calculate fitness (firing rate)
of each individual (network)

Prob=0.1
Weight=0.2

Delay=4
Rate=15

Prob=0.05
Weight=0.1

Delay=6
Rate=10

 Prob=0.3
Weight=0.03

Delay=9
Rate=20

Fitness = |17-15| = 2

fitness=|17-10|=7

fitness=|17-20|=3

Network optimization
1) We will use the network model in tut2.py but need to change the following things:

- Since we are going to run the model many times for each generation of the evolutionary algorithm, we don’t want plots showing up for
each one.
Therefore, change the simConfig options so that NO plots are generated (set plotting of raster, cells, and 2d map to False) –

- Remove the createSimulateAnalyze() call from the end of the file – we will decide when to run the model from the optimization algorithm

- Change the duration of the simulation to 0.5 sec – since we are going to run the model many times we need to make it a bit faster

2) Now lets adapt the parameter optimization code. Start from lab10_optim1.py save as lab10_optim2.py. We will begin by changing the
fitness evaluation function, so it creates and runs the neural network:

- add import tut2 so we can use the network we defined there

- add from netpyne import sim so we can use netpyne to run the network

- Replace the function evaluate_rastrigin with evaluate_netparams, which should:

-  Create an empty list called fitnessCandidates
-  for each candidate create and simulate the tut2 network
-  calcualte a fitness value for each candidate – for now just set this to a fixed value of 1 (we’ll fix later)
-  Add the fitness if each candidate value to fitnessCandidates

3) In the optimizaiton algorithm options set in my_ec.evolve, modify the following:
- Set evaluator=evaluate_netparams so we make use of the newly defined fitness evaluator functions

- Set pop_size=10, max_evaluations=50, num_selected=10, mutation_rate=0.2

Network optimization

What are we missing??

Network optimization

What are we missing??

-  Generate initial population

with value within range

-  Modify the network
parameters based on
individual evaluated

-  Calculate fitness function
correctly

Network optimization
1)  In the main code, add a variable targetFiring to store the average target firing rate we want to obtain in the network, and set it to 18 Hz.

2) Add the minimum and maximum values for each of the 3 parameters (probability, weight and delay). These are needed during the
generation of the initial population, and during the crossover and mutation phases – to make sure the genes of new children are within the
allowed range:
-  Create a list minParamValues to store minimum allowed values: 0.01 (for probability), 0.001 (for weight) and 1 (for delay)

-  Create a list maxParamValues to store minimum allowed values: 0.5 (for probability), 0.1 (for weight) and 20 (for delay)

3) Replace the rastrigin generation function with generate_netparams using the following code:

def	
 generate_netparams(random,	
 args):	

	
 size	
 =	
 args.get('num_inputs')	

	
 initialParams	
 =	
 [random.uniform(minParamValues[i],	
 maxParamValues[i])	
 for	
 i	
 in	
 range(size)]	

	
 return	
 initialParams	

Make sure you also select it in the main code: generator=generate_netparams

4) Modify the bounder (which makes sure parameter values are within the allowed range) so it makes use of the newly define parameter
values: bounder=ec.Bounder(minParamValues, maxParamValues) ; and modify the number of inputs to 3: num_inputs=3

5) Modify the tut2 network parameters (prob, weight,delay) before creating and simulating it. The parameter values (prob,weight,delay) for
each new candidate/child are stored in the list cand:
-  the probability values can be accessed via tut2.netParams.connParams]['S->M']['probability'] and should be set to cand[0]
-  the probability values can be accessed via tut2.netParams.connParams['S->M'][’weight'] and should be set to cand[1]

-  the probability values can be accessed via tut2.netParams.connParams['S->M'][’delay'] and should be set to cand[2]

Network optimization
6) Calculate the firing rate of the network and fitness of each individual:
-  Calculate the number of spikes, by finding the length of the list containing all the spike times: sim.simData['spkt']

-  Calculate the number of cells, by finding the length of the list contianing all the spike times: sim.net.cells
-  Calculate the sim duration in seconds, using the tut2.simConfig.duration (which gives the duration in ms)

-  Make sure the above values are stored as floats not integers (ie. can have decimals) – to convert any value to a float use the
float(value) function

-  Calculate the average network firing rate of the network by dividing the number of spikes, by the number of cells and the duration.

-  Calculate the fitness value for this candidate as the absolute difference (use abs()) between the target firing rate (use the variable we
defined in prev section) and the network firing rate (just calculated above)

-  Store the candidate’s fitness value in the list fitnessCandidates

7) For each candidate, print a message showing the candidate number (icand), the 3 parameter values of the candidate (prob, weight,
delay), the firing rate of the resulting candidate network, and the fitness value of the candidate network, eg.

Network optimization

Network Optimization
8) Lets now check how the network with the optimized parameters found by the evolutionary algorithm
looks! At the end of the main code, add the following:
-  store in bestCand the parameters of the best individual (optimum solution) using the following code:

 final_pop.sort(reverse=True)
 bestCand = final_pop[0].candidate

- Set the tut2 network parameters to those in bestCand (same as inside the evaluation function)

- Set the tut2 option to plot the raster: tut2.simConfig['plotRaster'] = True

- Create and simulate the tut2 network

Network optimization (Assessment)
1)  Start from lab10_optim2.py and replace the fitness function so that instead of the target being the average firing rate, the

target is now to maximize spike synchrony (ie. the synchrony of spikes of the different cells in the network):
n  Add the following generic function to calculate spike synchrony.
def	
 syncMeasure(spikeTimes,	
 duration):	

t0=-­‐1	
 	

width=1	
 	

cnt=0	

for	
 spkt	
 in	
 spikeTimes:	

if	
 (spkt>=t0+width):	
 	

t0=spkt	
 	

cnt+=1	

return	
 1-­‐cnt/(duration/width)	

n  Modify the fitness evaluator function so that the fitness value for each candidate is equivalent to the synchrony of
the network. Note you will need to use the syncMeasure above and pass the appropriate params: a list with the
spike times of the network, and the duration of the simulation (you can find how to obtain both values looking at the
previous examples)

n  Since we want to maximize the synchrony of the network, make sure that the relevant evolutionary computation
options is set to try to maximize the fitness (and not minimize it as before).

n  Modify tut2.py so that you plot synchrony bars and the synchrony value for the network: simConfig['plotSync'] = True

2) Replace the delay parameter (currently one of the 3 being optimized) with the decay time constant (tau2) of the network
synaptic mechanism. Use the previous examples to figure out how to access this parameter in tut2. Set the min and max
allowed values for this new parameter to 2 and 9.

3) Change the print statement for each candidate to reflect the above changes.

4) Replace the current tournament selection selector with truncation selection (only best individuals are selected).

Network optimization (Assessment)

