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Overview 
q  Why do we need it? Examples: 

n  Single cell params 
n  Network firing rates  
n  Behavioral performance  

q  Approaches 
n  Hand tuning 
n  Brute force 
n  Search Algorithms 

q  Evolutionary algorithms 
 
q  Mutation rates and elites 

q  Optimizing the firing rate of a network 



Parameter optimization/tuning/fitting 

q  Finding the optimum parameter values to achieve a target 

q  Target typically based on experimental data, e.g.: 
n  Single cell intrinsic properties (f-I curve, …) 
n  Network properties (firing rates, oscillations,…) 
n  Behavioral task (hand distance to target, …) 

q  Parameters of model adjusted within realistic range, e.g.: 
n  Density of ionic channels 
n  Connection weights, background inputs 
n  Reinforcement learning interval 

Model 
output = target? Yes à Finsih 

No à Modify parameters 



Parameter optimization: cell 
Parameters: Capacitance, leak, Ra, and density of 
channels HCN, Kd, Na, Kdr, Ka, Ca, KCa 

Target: Firing rates (I-f curve), spike shape, subthreshold 
voltage shape 



Parameter optimization: network 
Parameters: Connection weights and background input rate 

Target: Avg firing rates, coefficient of variation, LFP spectra, PSTH  



Parameter optimization: behavior 

L2/3 

L5 

L6 

Parameters: Training metaparameters (RL interval, exploratory movements, …) 

Target: Final distance to target, distance from ideal trajectory 

Firing&rates& ISI&CV& LFP&power&spectra&



Parameter optimization 

q  3 main approaches 
n  Hand tuning: 

n  Example: Purkinje cell (1994), 1 year of work 
n  Intelligent and focused but limited search of parameter space 

n  Brute force 
n  Incomplete or complete but sparse sampling 
n  Computation, storage and analysis challenges 

 
n  Search algorithms 

n  Find “best model” based on some fitness measure 
n  Many methods: gradient descent, simulated annealing, genetic/

evolutionary algorithms, … 



Evolutionary Algorithms 



Evolutionary/genetic algorithms 

/crossover 



Evolutionary algorithms 

Crossover 

Children 



Evolutionary algorithms 
Generation 

Initial fitness 
evaluation 

Selection              
    of parents 

Variation 
• Crossover 
• Mutation 

Fitness evaluation 
of children 

Replacement 

New 
generation 



Inspyred 

•  Python library for bio-inspired algorithms 

•  Includes evolutionary algorithms and many 
others 

•  Each stage of the algorithm is customizable 
 
•  http://pythonhosted.org/inspyred/index.html 

•  Installation: pip install inspyred    



Inspyred 
Generation 

Initial fitness 
evaluation 

Selection of parents 

Variation 
• Crossover 
• Mutation 

Fitness evaluation 
of children 

Replacement 

New 
generation 

Problem-specific components 
 
•  A generator that defines how solutions are created 
 
•  An evaluator that defines how fitness values are calculated 

for solutions 
 
 
Algorithm-specific evolutionary operators 
 
•  A terminator that determines whether the evolution should 

end 

•  A selector that determines which individuals should become 
parents 

•  A variator that determines how offspring are created from 
existing individuals 

•  A replacer that determines which individuals should survive 
into the next generation 



Inspyred example 
q Rastrigin example 

gene/parameter 1 
gene/parameter 2 

Fitness function (minimize) 



Inspyred example 
q Rastrigin example 

The Rastrigin function is a non-convex 
function used as a performance test 
problem for optimization algorithms.  
 
Finding the minimum of this function is 
a fairly difficult problem due to its large 
search space and its large number of 
local minima. 

Fitness function: 

Parameters: x1 , x2 



Optimization Example 

•  Create evolutionary computation object that encapsulates the components of a 
generic evolutionary computation.  

•  These components are the selection mechanism, the variation operators, the 
replacement mechanism, the terminators, and the s. 

 
•  Requires random value since needs to generate random crossover and 

mutations 



Optimization Example 

•  Select which parents will reproduce 



Optimization Example 

•  Select variations to apply during reproduction (crossover+mutation) 



Optimization Example 

•  Select variations to apply during reproduction 
(crossover+mutation) 



Optimization Example 

•  Select what set of parents and children to 
keep for next generation 



Optimization Example 

•  Select criteria to stop evolutionary 
optimization 



Optimization Example 

•  Select what information to observe/display 
during the evolutionary computations 



Optimization Example 

•  Select prpperties of evolutionary algorithm 



Understanding population size 
 
Start from lab10_optim1.py (Rastrigin example) make the following changes: 
 
1)  Change the population size (pop_size) from 100 to a) 10 individual and b) 500 individuals -- what effect does 

it have? 

Note 1: Population size is constant through generations, but only new individuals need to be evaluated; ie. all 
individuals are evaluated once at the beginning, but after that only offspring.  
 
Note 2:  The number of new individuals (offspring) in each generation is determined by the parameter 
num_selected (the number of offspring will be equal to the number of individuals selected for reproduction, ie. 1 
child / parent -- not completely intuitive but that’s how it works) 
 



pop_size 

q  Why is ‘worst’ higher at start in 100 
and 500? 

q  Why is ‘best’ lower at start in 500? 

q  Why is 10 faster to converge?  

popsize=10 

Popsize=500 

popsize=100 



Understanding selection 
 
2) Using pop_size=100, change the number of individuals selected for reproduction (num_selected) from 2 to  
a)  20 and  
b)  b) 100  
 
What is the effect?  
 
How would the graph look if the x-axis showed num generations instead of evaluations? 



num_selected  

q  Why do the ‘worst’ lines look so 
different? 

q  How would the graph look if x-axis 
was Generations ? 

     (hint: write down the total number of 
 generations in each case) 

num_sel=2 

num_sel=50 

num_sel=20 



Understanding mutation 
 
3) Using pop_size=100 and num_selected=2, remove the gaussian_mutation variator.  
 
What is the effect in convergence?  
 
How does the final fitness solution compare to previous ones? 
 
a)  What happens if you now reduce pop_size=10? 

b)   Using pop_size=10, num_selected=10, put back the gaussian_mutation variator; and test the following 3 
mutation_rate values: 0, 0.1 and 2 -- what’s going on?  

 
Note: This example should highlight the importance of mutation. 
 



mutation 

q  What is the effect in convergence? 

q  How does the final fitness solution 
compare? 

q  Why is the effect stronger for smaller 
pop size? 

mutation 

No mutation, popsize=10 

No mutation 



mutation rate 

q  Why doesn’t the mut_rate=2 
converge/decrease? 

q  What happens when mut_rate=0? 

mut_rate = 0.1  

mut_rate = 0 

mut_rate = 2  



Understanding elites 
4) Using pop_size=20 and num_selected=20, mutation_rate=0.1, change the current survivor 
replacement method (steady_state_replacement) for the generational replacement method (
http://pythonhosted.org/inspyred/reference.html#replacers-survivor-replacement-methods) 
 
Add the argument num_elites=0 to the function call my_ec.evolve(...). Compare the output for the 
following values of num_elites: 0, 1 and 20.  

What’s the effect? Notice any difference between 0 and 1? 
 
 
Note:  the best num_elites individuals in the current population are allowed to survive if they are better 
than the worst num_elites offspring. 



num elites 

q  Why doesn’t ‘worst’ line increase with 
20 elites? 

q  Difference between ‘best’ line of 0 vs 
1 elites? 

elites = 20 

elites = 1 

elites = 0  



Network optimization 
q  Aim: optimize the network connectivity parameters to obtain a specific 

firing rate in the tut2.py example. 

q  Parameters: 
n  Probability (S->M conns) 
n  Weight (S->M conns) 
n  Delay (S->M conns) 

 

q  Target (fitness measure): mean firing rate per cell (eg. 17 Hz) 

 
How to calculate fitness function? Minimize of maximize? 
 



Network optimization 
q  Aim: optimize the network connectivity parameters to obtain a specific 

firing rate in the tut2.py example. 

q  Parameters: 
n  Probability (S->M conns) 
n  Weight (S->M conns) 
n  Delay (S->M conns) 

 

q  Target (fitness measure): mean firing rate per cell (eg. 17 Hz) 

 
Fitness = | target rate – actual rate |  (minimize!) 
 



Generation 

Initial fitness 
evaluation 

Selection of parents 

Variation 
• Crossover 
• Mutation 

Fitness evaluation 
of children 

Replacement 

Network optimization 
Initial population with  
random parameters Prob=0.1  

Weight=0.2 
Delay=4 Prob=0.05  

Weight=0.1 
Delay=6 

Prob=0.3  
Weight=0.03 

Delay=9 

Calculate fitness (firing rate)  
of each individual (network) 

Prob=0.1  
Weight=0.2 

Delay=4 
Rate=15 

Prob=0.05  
Weight=0.1 

Delay=6 
Rate=10 

 Prob=0.3  
Weight=0.03 

Delay=9 
Rate=20 

 

Fitness = |17-15| = 2  

fitness=|17-10|=7  

fitness=|17-20|=3  



Network optimization 
1) We will use the network model in tut2.py but need to change the following things: 
 
- Since we are going to run the model many times for each generation of the evolutionary algorithm, we don’t want plots showing up for 
each one. 
Therefore, change the simConfig options so that NO plots are generated (set plotting of raster, cells, and 2d map to False) – 
 
- Remove the createSimulateAnalyze() call from the end of the file – we will decide when to run the model from the optimization algorithm 

- Change the duration of the simulation to 0.5 sec – since we are going to run the model many times we need to make it a bit faster 

2) Now lets adapt the parameter optimization code. Start from lab10_optim1.py save as lab10_optim2.py. We will begin by changing the 
fitness evaluation function, so it creates and runs the neural network: 
 
- add import tut2 so we can use the network we defined there 
 
- add from netpyne import sim so we can use netpyne to run the network 
 
- Replace the function evaluate_rastrigin with evaluate_netparams, which should: 

-  Create an empty list called fitnessCandidates  
-  for each candidate create and simulate the tut2 network 
-  calcualte a fitness value for each candidate – for now just set this to a fixed value of 1 (we’ll fix later) 
-  Add the fitness if each candidate value to fitnessCandidates 

 
3) In the optimizaiton algorithm options set in my_ec.evolve, modify the following: 
- Set evaluator=evaluate_netparams so we make use of the newly defined fitness evaluator functions 
 
- Set pop_size=10, max_evaluations=50, num_selected=10, mutation_rate=0.2 
 
 
 
 
 



Network optimization 

What are we missing?? 



Network optimization 

What are we missing?? 
 
-  Generate initial population 

with value within range 

-  Modify the network 
parameters based on 
individual evaluated 

-  Calculate fitness function 
correctly 



Network optimization 
1)  In the main code, add a variable targetFiring to store the average target firing rate we want to obtain in the network, and set it to 18 Hz. 

2) Add the minimum and maximum values for each of the 3 parameters (probability, weight and delay). These are needed during the 
generation of the initial population, and during the crossover and mutation phases – to make sure the genes of new children are within the 
allowed range: 
-  Create a list minParamValues to store minimum allowed values: 0.01 (for probability), 0.001 (for weight) and 1 (for delay) 

-  Create a list maxParamValues to store minimum allowed values: 0.5 (for probability), 0.1 (for weight) and 20 (for delay) 
 
3) Replace the rastrigin generation function with generate_netparams using the following code: 

 
def	
  generate_netparams(random,	
  args):	
  

	
  size	
  =	
  args.get('num_inputs')	
  

	
  initialParams	
  =	
  [random.uniform(minParamValues[i],	
  maxParamValues[i])	
  for	
  i	
  in	
  range(size)]	
  

	
  return	
  initialParams	
  

 
Make sure you also select it in the main code: generator=generate_netparams 

 
4) Modify the bounder (which makes sure parameter values are within the allowed range) so it makes use of the newly define parameter 
values: bounder=ec.Bounder(minParamValues, maxParamValues) ; and modify the number of inputs to 3: num_inputs=3 

 
5) Modify the tut2 network parameters (prob, weight,delay) before creating and simulating it. The parameter values (prob,weight,delay) for 
each new candidate/child are stored in the list cand: 
-  the probability values can be accessed via tut2.netParams.connParams]['S->M']['probability']  and should be set to cand[0]  
-  the probability values can be accessed via tut2.netParams.connParams['S->M'][’weight']  and should be set to cand[1]  

-  the probability values can be accessed via tut2.netParams.connParams['S->M'][’delay']  and should be set to cand[2]  
 

 
 



Network optimization 
6) Calculate the firing rate of the network and fitness of each individual: 
-  Calculate the number of spikes, by finding the length of the list containing all the spike times: sim.simData['spkt'] 

-  Calculate the number of cells, by finding the length of the list contianing all the spike times: sim.net.cells 
-  Calculate the sim duration in seconds, using the tut2.simConfig.duration (which gives the duration in ms) 

-  Make sure the above values are stored as floats not integers (ie. can have decimals) – to convert any value to a float use the 
float(value) function 

-  Calculate the average network firing rate of the network by dividing the number of spikes, by the number of cells and the duration.  

-  Calculate the fitness value for this candidate as the absolute difference (use abs()) between the target firing rate (use the variable we 
defined in prev section) and the network firing rate (just calculated above) 

-  Store the candidate’s fitness value in the list fitnessCandidates 

 
7) For each candidate, print a message showing the candidate number (icand), the 3 parameter values of the candidate (prob, weight, 
delay), the firing rate of the resulting candidate network, and the fitness value of the candidate network, eg. 



Network optimization 



Network Optimization 
8) Lets now check how the network with the optimized parameters found by the evolutionary algorithm 
looks! At the end of the main code, add the following: 
-  store in bestCand the parameters of the best individual (optimum solution) using the following code: 

 final_pop.sort(reverse=True) 
 bestCand = final_pop[0].candidate 

 
- Set the tut2 network parameters to those in bestCand (same as inside the evaluation function) 
 
- Set the tut2 option to plot the raster: tut2.simConfig['plotRaster'] = True 
 
- Create and simulate the tut2 network 



Network optimization (Assessment) 
1)  Start from lab10_optim2.py and replace the fitness function so that instead of the target being the average firing rate, the 

target is now to maximize spike synchrony (ie. the synchrony of spikes of the different cells in the network): 
n  Add the following generic function to calculate spike synchrony.  
def	
  syncMeasure(spikeTimes,	
  duration):	
  

t0=-­‐1	
  	
  
width=1	
  	
  
cnt=0	
  
for	
  spkt	
  in	
  spikeTimes:	
  
if	
  (spkt>=t0+width):	
  	
  
t0=spkt	
  	
  
cnt+=1	
  
return	
  1-­‐cnt/(duration/width)	
  

n  Modify the fitness evaluator function so that the fitness value for each candidate is equivalent to the synchrony of 
the network. Note you will need to use the syncMeasure above and pass the appropriate params: a list with the 
spike times of the network, and the duration of the simulation (you can find how to obtain both values looking at the 
previous examples) 

n  Since we want to maximize the synchrony of the network, make sure that the relevant evolutionary computation 
options is set to try to maximize the fitness (and not minimize it as before). 

n  Modify tut2.py so that you plot synchrony bars and the synchrony value for the network: simConfig['plotSync'] = True 

 

2) Replace the delay parameter (currently one of the 3 being optimized) with the decay time constant (tau2) of the network 
synaptic mechanism. Use the previous examples to figure out how to access this parameter in tut2. Set the min and max 
allowed values for this new parameter to 2 and 9.  
 

3) Change the print statement for each candidate to reflect the above changes. 

 

4) Replace the current tournament selection selector with truncation selection (only best individuals are selected). 

 



Network optimization (Assessment) 


