
NetPyNE	GUI	Tutorial

NetPyNE	GUI	Tutorial:	Installation

Download	this	tutorial	PDF:	

bit.ly/netpyne-ui-tut

NetPyNE	GUI	Tutorial:	Installation

https://github.com/Neurosim-lab/netpyne_workspace.git

Clone	or	download	this	Github	repo	with	this	tutorial	and	the	workspace	files:

NetPyNE	GUI	Tutorial:	Installation
Instructions: https://github.com/MetaCell/NetPyNE-UI/wiki

NetPyNE	GUI	Tutorial:	Installation

Option	1:	Install	NEURON	crxd	from	sources (Github)	and	NetPyNE-UI	via	pip

Option	2:	Use	pre-packaged	Docker with	all	you	need

Option	3: Use	pre-packaged	Virtual	Machine with	all	you	need

What	is	what…

NEURON

What	is	what…

NEURON

NetPyNE

What	is	what…

NEURON

NetPyNE

NetPyNE	GUI

NEURON

NetPyNE

NetPyNE	GUI

What	is	what…

A	Python	package	to	facilitate	the	
development,	simulation	and	analysis	of	
biological	neuronal	networks	in	NEURON

www.netpyne.org

• Facilitate	incorporation	of	experimental	data	at	multiple	scales

spiny stellates (ss). Their somata were located at depths
between 600 and 700 lm, 500 and 1000 lm, and 550 and 900
lm, respectively. L4py displayed a narrow apical tuft terminat-
ing in L1. In contrast, L4sp extended no further than L2 and
lacked an apical tuft. The L4ss lacked an apical dendrite
altogether.

Infragranular L5 contained 2 types of pyramidal neurons,
slender (st)- and thick-tufted (tt) pyramids (Wise and Jones
1977). The apical tuft dendrites of L5tt pyramids extended
beyond the tangential column borders, while those of L5st
pyramids did not. The somata of these 2 types intermingled
(1000--1300 lm and 1100--1400 lm), apart from ~100-lm thick
regions directly underneath L4 and above L6, which were
exclusively populated by L5st and L5tt pyramids, respectively.

Finally, the clustering identified 2 types of excitatory
neurons in L6. The 2 cell types differed in their soma locations
and dendrite morphology. Neurons of the first cell type were
located at depths between 1400 and 1600 lm and displayed
a short apical dendrite that lacked a tuft and terminated at the
border between L4 and 5. In contrast, neurons of the second
cell type extended apical dendrites into L4 that displayed
narrow tufts. In our sample, they were located deeper within
L6 at depths between 1550 and 1800 lm (with the exception
of one cell that was located within L5 [~1200-lm depth] but
otherwise showed the characteristic morphological features of
this cell type). The dendrite morphologies of the 2 cell types
resembled those of neurons which have previously been
classified by characteristic axon projection patterns into L6
corticocortical (cc) and corticothalmic (ct) pyramids (Kumar
and Ohana 2008). This naming convention was thus adopted
for the present study.

Cell Type--Specific 3D Distribution of Excitatory Somata in
a Barrel Column

To quantify the number of excitatory neurons per cell type in
a barrel column, we stained slices with NeuN to specifically
visualize the location of all neuron somata (Meyer, Wimmer,
Oberlaender, et al. 2010). Using 3D confocal microscopy and
automated soma detection software (Oberlaender, Dercksen,
et al. 2009), we obtained the number and 3D distribution of all

neuron somata within 9 barrel columns and their surrounding
septa (Supplementary Fig. S2). The average distribution of
inhibitory neurons in a cortical barrel column (Meyer et al.
2011) was subtracted from the distribution of all neurons. The
resultant average 3D distribution of excitatory somata was
combined with the above described vertical cell-type borders
(and overlaps) and previously reported dimensions of a cortical
barrel column (i.e., cylinder with 121 000 lm2 cross-sectional
area [Wimmer et al. 2010]). This combination allowed
subdividing the average excitatory soma distribution into 9
soma domains, which yielded the number and 3D locations of
excitatory somata for each cell type (Fig. 3A, Table 2). The
cylindrical shaped model column contained ~15 000 excitatory
somata in total and was referred to as the ‘‘soma column’’ (Fig. 3B).

Cell Type--Specific 3D Distribution of Excitatory Dendrites
in a Barrel Column

Next, somata were replaced by 3D soma--dendrite morpholo-
gies of the corresponding cell types (Fig. 3C). Reconstructed
morphologies were reregistered to their new location, and
orientation with respect to the vertical column axis was
preserved. Thus, even though the sample of reconstructed
dendrite morphologies was limited for each cell type, the
assembling process (Lang et al. 2011) guaranteed that dendrite
morphologies at any location in the model column (in silico)
resembled those that would be found at approximately the
same locations in a real column (in vivo).

The distribution of spines along the dendrites may be
location specific and cell-type specific (Romand et al. 2011).
However, as a first-order estimate, we assumed a constant and
uniform distribution of spines (i.e., 0.5 spines per 1-lm
dendrite) for each cell type (Larkman and Mason 1990) and
converted the 3D dendrite distribution into a 3D spine
distribution (Fig. 3D). While the soma distribution displayed
pronounced density peaks in cytoarchitectonic L4 and L6 (Fig.
3B), the spine distribution was more homogeneous along the
vertical column axis, reaching maximal densities in the center
of L4 (i.e., the barrel) and at the border between L1 and L2. The
latter reflected high densities of apical tufts from dendrites of
multiple cell types (i.e., L2, L3, L4py, L5st, L5tt).

Figure 2. Definition of excitatory cell types in a barrel column. Cluster analysis of morphological features identified 9 excitatory cell types. Registration allowed determining the
vertical extent of the cell type--specific soma locations (colored vertical bars). These cell-type borders were not sharp and complement cytoarchitectonic definitions of cortical
layers (e.g., using soma density as indicated by the horizontal dashed lines; adopted from Meyer, Wimmer, Oberlaender, et al. (2010). Some of the cell-type borders determined
here did not match cytoarchitectonic layer borders (e.g., L4 neurons may be located in cytoarchitectonic layers 3 and 5) and some cell types intermingled within layers (e.g., thick-
tufted and slender-tufted neurons in L5).

Thalamocortical Circuits in a Barrel Column d Oberlaender et al.2378

 at Bibliotheque Com
m

une D
e Chim

ieU
N

IL - EPFL on O
ctober 11, 2012

http://cercor.oxfordjournals.org/
D

ow
nloaded from

NetPyNE:	Motivation

• Facilitate	incorporation	of	experimental	data	at	multiple	scales

NetPyNE:	Motivation

• Facilitate	incorporation	of	experimental	data	at	multiple	scales

Long-range	inputs Local	microcircuits Dendritic	inputs

NetPyNE:	Motivation

• Separate	model	parameters	from	implementation

• Standardize	format	– easy	to	read,	interpret,	edit,	share	etc

popParams['EXC_L2'] = {
'cellType': 'PYR',
'yRange': [100, 400],
'numCells': 50}

for cellParams in range(pop['numCells']):
cell = sim.Cell(cellParams)
cell.tags[‘y’] = numpy.random(100,400)
cell.tags[‘cellType’] = ‘PYR’

Replicate:	get	same	thing	to	run	again

Reproduce:	make	it	youself

NetPyNE:	Motivation

• Facilitate	model	parallelization	(HPCs)	

• Batch	parameter	exploration/optimization

NetPyNE:	Motivation

NetPyNE

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

NEURON
cell models

NeuroML cell
and network

models

NetPyNE

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

Network instantiation Parallel Simulation

NEURON
simulator

Simulation results

NEURON
cell models

NeuroML cell
and network

models

Representation of all
cells, connections, etc

Distribution and
gathering across

MPI nodes

Spikes, voltage traces, …

NetPyNE

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

Network instantiation Parallel Simulation

NEURON
simulator

Simulation results

NEURON
cell models

NeuroML cell
and network

models

Representation of all
cells, connections, etc

Distribution and
gathering across

MPI nodes

Spikes, voltage traces, …

Analysis and saving

NeuroML
Brian, NEST,

MOOSE,
PyNN

Save to pickle, json,
mat, hdf5,…

Analysis and Visualization

Connectivity matrix, raster plot, …

Matlab,
Scipy,

Pandas,
Excel, …

Export to NeuroML
format

NetPyNE
Batch simulation module (parameter exploration, MPI/HPC job submission, etc)

High level specifications

Network Parameters

• Cell properties
• Connectivity
• …

Simulation config

• Duration
• Saving options
• …

Network instantiation Parallel Simulation

NEURON
simulator

Simulation results

NEURON
cell models

NeuroML cell
and network

models

Representation of all
cells, connections, etc

Distribution and
gathering across

MPI nodes

Spikes, voltage traces, …

Analysis and saving

NeuroML
Brian, NEST,

MOOSE,
PyNN

Save to pickle, json,
mat, hdf5,…

Analysis and Visualization

Connectivity matrix, raster plot, …

Matlab,
Scipy,

Pandas,
Excel, …

Export to NeuroML
format

q Specifications are provided in a standardized, declarative Python format (JSON-like, lists and dicts).

q Clear separation of parameters from implementation code.

q Error checking and suggestions to facilitate model definition.

NetPyNE: High level specifications

connParams['bin3->CSP'] = {
'preConds': {'y': [100, 150]},
'postConds': {'pop': 'CSP'},
'probability': 0.15,
'weight': 0.4,
'delay': 5,
'synMech': 'AMPA'}

q User can define:

§ Populations: cell type, number of neurons or density, spatial extent, ...

§ Cell properties: Morphology, biophysics, implementation, …

§ Synaptic mechanisms: Time constants, reversal potential, implementation, …

§ Stimulation: Spike generators, current clamps, spatiotemporal properties, …

§ Connectivity rules: conditions of pre- and post-synaptic cells, different functions, …

§ Simulation configuration: duration, saving and analysis, graphical output, ...

NetPyNE: High level specifications

q Network is created as Python-based standardized hierarchical data structure.

net cells cells[0]

cells[1]

tags

secs

conns

stims

gid:	100

popLabel:	 'L4'

cellType:	'PYR'

x:	100

…

soma

dend1

conns[0]

stims[0]

geom

topol

mechs

NEURON	
h.Section()

preGid:	0

sec:	'dend1'

…

NEURON	
hNetCon()

type:	'IClamp'

amp:	0.3

…

NEURON	
h.IClamp()

diam:	18

L:	18

...

hh

pas

gnabar:	0.12

gkbar:	0.036

…

NetPyNE: Network Instantiation

Properties at all scales easy to access:

net.cells[5].secs.soma.mechs.hh.gnabar

Includes NEURON objects required for

simulation (removed when saving to file)

q Set up for MPI parallel simulation across multiple nodes (via NEURON simulator).

q Takes care of balanced distribution of cells and gathering of simulation output from nodes.

Master'
Node'

Distribute'
cells'

Gather''
simula4on'output'

Node'1'

Node'2'

Node'N'

…"

NetPyNE: Parallel Simulation

q NetPyNE available on the Neuroscience Gateway (NSG) supercomputing platform.

Simulation run time as a function of number of cells
and number of nodes (Neural Comput, 2016).

Results obtained using NetPyNE on NSG.

NetPyNE: Parallel Simulation

q Easy specification of parameters and range of values to explore in batch simulations.

q Pre-defined, configurable setups to automatically submit jobs in multicore machines (Bulletin board)

or supercomputers (SLURM or PBS Torque)

NetPyNE: Batch Parallel Simulations

§ Connectivity matrix at cell or population level (weights, num connections, probability,...)

NetPyNE: Analysis

plotConn(include = ['allCells'], feature='strength’,
groupBy='pop', figSize=(9,9), showFig=True)

§ 3D cell shape plot

§ Option to include color-coded variables (eg, num of synapses)

plotShape(…)

NetPyNE: Analysis

q Easy-to-use functions for analysis and plotting of network and simulation output

§ Raster plot of any subset of cells

§ Spike histogram of populations or subsets of cells

plotRaster(include=['allCells'], timeRange=[200,800], orderBy='y',
orderInverse=True, spikeHist='overlay', spikeHistBin=5)

NetPyNE: Analysis

plotTraces(include=[('E2',0), ('E4',0), ('E5',5)],
timeRange=[0,200], overlay=True, oneFigPer='trace')

§ Intrinsic cell variables (voltages, currents, conductance) trace plots

NetPyNE: Analysis

§ LFP time-series, PSD, spectrogram and electrode locations

plotLFP(…)

NetPyNE: Analysis

§ Spectral Granger causality

§ Normalized transfer entropy

plotGranger(…)

NetPyNE: Analysis

q Analysis and visualization of multidimensional batch simulation results.

NetPyNE: Analysis

q Save and load high-level specifications, network instance, simulation config and/or simulation results.

q Multiple formats supported: pickle, Matlab, JSON, CSV, HDF5

q Export/import network instance to/from NeuroML, the standard format for neural models.

NetPyNE: Data saving and exporting

PyNN

Import/export to standard format

Import/export to other simulators

NetPyNE: Data saving and exporting

NetPyNE: Documentation and Tutorials
www.netpyne.org

https://groups.google.com/forum
/#!forum/netpyne-forum

https://www.neuron.yale.edu/phpBB/viewforum.php?f=
45&sid=99554ea5df10540d9b31e0c74929eaf0

NetPyNE: Q&A Forums

q Other models in progress:

§ Traub thalamocortical network (Padraig Gleeson, UCL)

§ Hippocampus CA3 (Ben Tessler, SUNY DMC)

§ Ischemia in cortical network (Alex Seidenstein, SUNY DMC)

§ STDP in biophysically detailed networks (Anatoly Buchin, Allen Brain)

§ Basal Ganglia network (Lucas, UCD)

§ LFP oscillations (Christian Fink, Ohio Wesleyan)

§ Dendritic computations (Birgit Kriener, Oslo)

§ Thalamocortical epilepsy network (Andrew Knox, Cincinatti Hospital)

§ V1 network with Allen Brain cells (SUNY DMC)

§ Schizophrenia in cortical network (Cristoph Metzner, Hertfordshire)

§ Spinal cord circuits (Vittorio Caggiano, IBM Watson)

§ Full list of 43 models: https://drive.google.com/open?id=1bkWHakgZoEkYIkzrAS8sIKCvO5PSuUXLLRjNdN2pseY

NetPyNE: Existing models

Mouse 6-layer M1 with 10,074 neurons of 5 classes distributed in 15 populations;
Full scale cylindric volume of 300 μm (diameter) x 1350 μm (cortical depth)

q Data-driven multiscale network model of M1 microcircuits

NetPyNE: M1 microcircuits

Mouse 6-layer M1 with 10,074 neurons of 5 classes distributed in 15 populations;
Full scale cylindric volume of 300 μm (diameter) x 1350 μm (cortical depth)

q Data-driven multiscale network model of M1 microcircuitsConnection strength

Po
st

sy
na

pt
ic

no

rm
al

iz
ed

 c
or

tic
al

 d
ep

th
 (N

C
D

)

A) C) Main local and long-range excitatory connectionsE à IT L2/3,4

E à IT 5A,5B E à PT L5B

E à IT L6 E à CT L6

L1

L4

L2/3

L5A

L5B

L6

PT CT PO VL S1
S2

cM1
M2

OCIT

0.0

0.1

0.29

0.37

0.47

0.8

1.0

Po
st

sy
na

pt
ic

 N
C

D

C
on

ve
rg

en
ce

Presynpatic normalized cortical depth (NCD)

B) Long-range à IT Long-range à PT Long-range à CT

Long range input

NetPyNE: M1 microcircuits

NetPyNE: Acknowledgments
q Contributors:

§ Salvador Dura-Bernal (SUNY DMC)
§ Ben Suter (Northwestern)
§ Matteo Cantarelli (Metacell Ltd)
§ Adrian Quintana (EyeSeeTea Ltd)
§ Dario del Piano (Metacell Ltd)
§ Facundo Rodriguez (SUNY DMC)
§ Padraig Gleeson (UCL)
§ Robert McDougal (Yale)
§ Michael Hines (Yale)
§ Gordon MG Shepherd (Northwestern)
§ William Lytton (SUNY DMC)

q Lab website: www.neurosimlab.org

q NetPyNE Website: www.netpyne.org

q NetPyNE-UI Website:
www.github.com/MetaCell/NetPyNE-UI

q Github: www.github.com/Neurosim-lab/netpyne
(open source development; contributions welcome)

q Funding:
§ NIH Grant U01EB017695
§ NIH Grant R01EB022903
§ NIH Grant R01MH086638
§ NYS Grant DOH01-C32250GG-3450000

NetPyNE	GUI	Tutorial:	
Simple cell	net

NetPyNE	GUI	Tutorial:	Simple	cell	net
1) Open NetPyNE GUI on web browser

NetPyNE	GUI	Tutorial:	Simple	cell	net
2) Add a population ’E’ of 20 ‘pyr’ cells

NetPyNE	GUI	Tutorial:	Simple	cell	net
3) Add a cell rule ‘pyr_rule’ for ‘pyr’ cells

NetPyNE	GUI	Tutorial:	Simple	cell	net
4) Add a ‘soma’ section in the ‘pyr_rule’

NetPyNE	GUI	Tutorial:	Simple	cell	net
5) Add the geometry of the ‘soma’ section in the ‘pyr_rule’

NetPyNE	GUI	Tutorial:	Simple	cell	net
6) Add a ‘dend’ section in the ‘pyr_rule’

NetPyNE	GUI	Tutorial:	Simple	cell	net
7a) Add the geometry of the ‘dend’ section in the ‘pyr_rule’

NetPyNE	GUI	Tutorial:	Simple	cell	net
7b) Connect the ‘dend’ section to the ‘soma’ section in Topology

NetPyNE	GUI	Tutorial:	Simple	cell	net
8) Explore your network … feel free to rotate, zoom and move around!

NetPyNE	GUI	Tutorial:	Simple	cell	net
9) Customize the color of your population or cells

NetPyNE	GUI	Tutorial:	Simple	cell	net
10) To add channels: go to ‘Define your network’ à ‘Cell rules’ à ‘pyr rule’ à ‘soma’ à ‘mechanisms’ à (+)

NetPyNE	GUI	Tutorial:	Simple	cell	net
11) Add the ‘hh’ (Hodgkin-Huxley) mechanism to the ’soma’ with the following parameters:

NetPyNE	GUI	Tutorial:	Simple	cell	net
12) Add the ‘pas’ (passive) mechanism to the ‘dend’ with the following parameters:

NetPyNE	GUI	Tutorial:	Simple	cell	net
13) Add an IClamp (current clamp) source of stimulation

NetPyNE	GUI	Tutorial:	Simple	cell	net
14) Create a stimulation target rule to place IClamp1 on the cell dendrite:

NetPyNE	GUI	Tutorial:	Simple	cell	net
15) Place the IClamp1 just on one of the cells (with global index 0) using the target rule ‘conditions’:

NetPyNE	GUI	Tutorial:	Simple	cell	net
16) Set the simulation duration to 200ms in ‘Simulation configuration’

NetPyNE	GUI	Tutorial:	Simple	cell	net
17) Record soma and dendrite voltage traces from from cell with id 0:

Specify	traces	to	record	using	Python	dictionary	format	(no	quotes	required):	

V_soma: {var: v, sec: soma, loc: 0.5}
V_dend: {var: v, sec: dend, loc: 1.0}

NetPyNE	GUI	Tutorial:	Simple	cell	net
18) ‘Simulate and Analyze’ the network and plot ‘Cell traces’

NetPyNE	GUI	Tutorial:	Simple	cell	net
19) Increase ’IClamp1’ amplitude so generate a spike (set to 0.6 nA)

NetPyNE	GUI	Tutorial:	Simple	cell	net
21) Simulate and plot traces (dendrite current clamp, soma spike and back-propagation to dendrite)

NetPyNE	GUI	Tutorial:	Simple	cell	net
22a) Create recurrent connections (E->E) rule; syn=exc, probablity=0.3, weight=0.03, delay=5

NetPyNE	GUI	Tutorial:	Simple	cell	net
22b) Make presynaptic cells condition be ‘E’ population

NetPyNE	GUI	Tutorial:	Simple	cell	net
22c) Make postsynaptic cells condition be ‘E’ population

NetPyNE	GUI	Tutorial:	Simple	cell	net
23) Simulate and plot traces and raster plot

Cell 0 spikes due to IClamp -> triggers spikes in other cells due to conn -> cell 0 spikes again

NetPyNE	GUI	Tutorial:	Simple	cell	net
Note: If you have any errors with step-by-step, try loading the “simple cell net” tutorial directly from file

NetPyNE	GUI	Tutorial:	
Complex	cell	net

NetPyNE	GUI	Tutorial:	Complex	cell	net
1) Reload webpage to start from scratch

NetPyNE	GUI	Tutorial:	Complex	cell	net
2) Add 2 populations of 3 cells : - ’E’ (excitatory) of cell type ‘PT’ (pyramidal-tract corticospinal)

- ‘I’ (inhibitory) of cell type ‘FS’ (fast-spiking interneuron)

NetPyNE	GUI	Tutorial:	Complex	cell	net
3a) Create PT cell rule

NetPyNE	GUI	Tutorial:	Complex	cell	net
3b) Import PT cell from template (PTcell.hoc)

NetPyNE	GUI	Tutorial:	Complex	cell	net
3c) Check sections and mechanisms imported

NetPyNE	GUI	Tutorial:	Complex	cell	net
4a) Create FS rule

NetPyNE	GUI	Tutorial:	Complex	cell	net
4b) Import FS cell from template (FScell.hoc)

NetPyNE	GUI	Tutorial:	Complex	cell	net
5) Visualize network

NetPyNE	GUI	Tutorial:	Complex	cell	net
6) Add AMPA and GABA synapses

NetPyNE	GUI	Tutorial:	Complex	cell	net
7a) Add background stimulation Netstim (spike generator) to PT cells

NetPyNE	GUI	Tutorial:	Complex	cell	net
7b) Add background stimulation Netstim (spike generator) to PT cells

NetPyNE	GUI	Tutorial:	Complex	cell	net
7c) Add background stimulation Netstim (spike generator) to PT cells (E population)

NetPyNE	GUI	Tutorial:	Complex	cell	net
8a) Connect E->I

NetPyNE	GUI	Tutorial:	Complex	cell	net
8b) Connect E->I

NetPyNE	GUI	Tutorial:	Complex	cell	net
9a) Connect I->E

NetPyNE	GUI	Tutorial:	Complex	cell	net
9b) Connect I->E

NetPyNE	GUI	Tutorial:	Complex	cell	net
10) Set duration to 500 ms and time step to 0.1 (if too slow can decrease duration)

NetPyNE	GUI	Tutorial:	Complex	cell	net
11) Record voltate trace from soma

NetPyNE	GUI	Tutorial:	Complex	cell	net
12) Configure traces plot to include cells 0 (PT) and 4 (FS)

NetPyNE	GUI	Tutorial:	Complex	cell	net
13) Simulate and visualize traces (synchrony due to recurrent conns and exaggerated IPSPs)

NetPyNE	GUI	Tutorial:	Complex	cell	net
Note: If you have any errors with step-by-step, try loading the “complex cell net” tutorial directly from file

NetPyNE	GUI	Tutorial:	
Multiscale	net

NetPyNE	GUI	Tutorial:	Multiscale	net
1) Load the “multiscale net” tutorial (gui_tut3.py) directly from file via GUI “Import model”:

a) Click on utilities icon in top-right of GUI to open “Import” window

NetPyNE	GUI	Tutorial:	Multiscale	net
1) Load the “multiscale net” tutorial (gui_tut3.py) directly from file via GUI “Import model”:

b) Select gui_tut3.py in “NetParams path” and “SimConfig path”

NetPyNE	GUI	Tutorial:	Multiscale	net
1) Load the “multiscale net” tutorial (gui_tut3.py) directly from file via GUI “Import model”:

c) Select “Compile mod files” and “mod” in “Mod path folder”

NetPyNE	GUI	Tutorial:	Multiscale	net
2) Check the populations and its spatial distribution (3 layers, each with E and I pops)

NetPyNE	GUI	Tutorial:	Multiscale	net
3) Check the Cell Rule, with its sections and mechanisms (6-comp cell; detailed biphysics / 9 ionic channels)

NetPyNE	GUI	Tutorial:	Multiscale	net
4) Check Connectivity rules (some parameters defined using functions)

Delay	is	function	of	
distance	between	cells

Weight	increases	as	
function	of	cortical	
depth

NetPyNE	GUI	Tutorial:	Multiscale	net
5) Check Simulation Configuration (recording voltage, current, and calcium concentrations)

NetPyNE	GUI	Tutorial:	Multiscale	net
6) Click on “Explore your Network” to instantiate the network

NetPyNE	GUI	Tutorial:	Multiscale	net
7) Show connectivity plots

NetPyNE	GUI	Tutorial:	Multiscale	net
8) Check reaction-diffusion (RxD) code gui_tut3_rxd.py (similar to morning tutorial)

NetPyNE	GUI	Tutorial:	Multiscale	net

1)	Metabotropic	glutamate	receptors	(mGluR)	activate

2)	increase	IP3	in	cytosol

3) ER	IP3R	channels	open	

4) ER	Ca	released	to	cytosol	

5) kBK	/	Kca	channels	(sensitive	to	Ca)	open	

6)	K	flows	inside	cell

7)	hyperpolarizing	K	current	

8)	reduces	cell	firing

9) Remind yourself what’s going on:

2

1

3

4

5

NetPyNE	GUI	Tutorial:	Multiscale	net
10) Run reaction-diffusion (RxD) code via Jupyter notebook

Copy paste from here:

import gui_tut3_rxd
netpyne_geppetto.sim.net.rxd['species']['ca'] = gui_tut3_rxd.ca
netpyne_geppetto.sim.net.rxd['regions']['extracellular'] = gui_tut3_rxd.extracellular

To execute press Ctrl + Enter

NetPyNE	GUI	Tutorial:	Multiscale	net
11) Run simulation and plot results [fig needs updating]

NetPyNE	GUI	Tutorial:	Multiscale	net
12) Reload web to remove current model

Repeat steps: 1) Import model and 6) Instantiate network

Now run RxD code in jupyter but set inital ip3 to 0.1 (high value):

Copy paste from here:

import gui_tut3_rxd
netpyne_geppetto.sim.net.rxd['species']['ca'] = gui_tut3_rxd.ca
netpyne_geppetto.sim.net.rxd['regions']['extracellular'] = gui_tut3_rxd.extracellular
gui_tut3_rxd.ip3.initial = 0.1

To execute press Ctrl + Enter

NetPyNE	GUI	Tutorial:	Multiscale	net
13) Compare results with previous simulation

high	ip3	à ER	Ca	released	to	Cyt	à kBK	channels	open	à hyperpolarizing	K	current	à less	firing

