Middle tufted cells drive the mitral cell spatiotemporal firing patterns
through glomerular and granule cell microcircuits
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Abstract

The olfactory bulb (OB) is a dual layer system, consisting of many glomerular units (GU) extending across the glomerular (GL) and the granule cell
layers (GCL). The principal neurons are middle tufted (MT) and mitral cells (MC), whose activity encodes odor representation which is sent on the
olfactory cortex (OC) through their axons. In turn, their activity is modulated by inter-glomerular lateral interactions which occur at both layers.

Previously, our 3D biophysically and morphologically accurate OB models have included only MCs, GL, and GCL. It has been predicted that the
GL microcircuits transform a dense and disorganized spatial glomerular activation, such as that exhibited by natural odors, into a sparse, normalized
and contrast-enhanced one. Together, the GCL, over time, decreases the spatial representation overlaps of different odors after learning (Cavarretta
et al., 2016). However, many questions remain open, especially regarding the role of MTs.

In this work, we have implemented MTs in our 3D model. We show that both MTs and MCs contribute to the columnar organization of the GCL, in
particular demonstrating that they must be inhibited by the same GL neurons, in order to generate learning-dependent columns (Migliore et al., 2007)
which conform to those observed in the experiments (Willhite et al., 2006). The inclusion of MTs in the model also allowed an estimation of the relative
proportion of the 3 subtype of granule cells (Woolf et al., 1991), for which there are no quantitative data.

In addition, we found that MT membrane properties facilitate their precise inter-glomerular synchronization, which would be a key-feature to realize a
fine temporal code relying on the inter-glomerular interactions in the GCL. Finally, assuming the MTs excite the deep short axon cells by their axon
collaterals, we have inferred a plausible connection scheme in which the MTs could orchestrate the lateral inhibition produced by the GCL.

These results provide insights into the role of the MTs in spatial and temporal odor coding, which will eventually lead to also include the OC in the
3D OB model, starting from those regions that are targeted from MCs and MTs axons and could act as a gate connecting the OB and OC, such as the
anterior olfactory nucleus.

Are MTs controlled by the glomerular layer?

3D model of the olfactory bulb

To investigate how the olfactory bulb (OB) represents natural odors, we have built the first 3D large scale model
of it (Migliore et al., 2014; Migliore et al., 2015; Cavarretta et al., 2016).
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The first version concerned the mitral-granule cell circuit; it reproduced the granule cell (GC) column observed
experimentally in Willhite et al. (2006) and Kim et al. (2012) (Left panels), by simulating odor learning (Right
panels). In Cavarretta et al., (2016), to simulate the learning of natural odors, we have extended our model with

the microcircuit of the glomerular layer (GL) (Linster and Cleland, 2009; Cleland and Sethupathy, 20006).

Column formation is driven by MC and MT activities, which connect to deep (dGC) and o
superficial GCs (sGC), respectively. Such subdivision can even be extended to the GC
column. Experiments (Willhite et al., 2006) revealed that 95% of GC columns extended
robustly through the full GCL depth (Left). This gives insight into inhibition of sister MTs
and MCs by the GL, because this makes them either active or silent together during
learning. If MTs were not controlled by the GL, they might fire even if the MCs within
the same GU are silent, forming GC columns only in the superficial half of the GCL
(Right). This would contradict experimental evidence (Willhite et al., 2006), where no
short columns were observed. Therefore, taken together, these results suggest that
both MCs and MTs are controlled by the GL.

inter-glomerular inhibition
(for bulb-wide normalization)

External Tufted cell

The GL microcircuit simulated the
combined effects due to External
Tufted Cells, Short Axon Cells, and
Periglomerular Cells (see the
scheme on the left).

DSACs may play an important role in modulating the MC and MT output from the OB. Experimental findings
(Igarashi et al., 2012; Schoppa and Westbrook, 1998; Burton and Urban, 2015) suggested that MTs may drive
DSAC activity, whereas no information is available on their connectivity. We have hypothesized a simple “fire
together wire together rule”, and assumed that DSACs axons target GCs shared between different GUs, as
schematically represented in panel (A) using 4 GUs; we assumed that previous learning history resulted in the
DSAC inhibiting the GCs shared between the GU pair (GU5,GU37) and (GU32,GU78). These were 4 of the
128 GUs implemented in our 3D model, and their spatial location in the dorsal part of the olfactory bulb is
highlighted in panel (B).
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t (sec) (DS/S, negative values). At low conc., LI effectiveness is reduced in MCs (lll), while

it is strong in MTs (IV). Thus, together with the M/T-GC connectivity, the odor conc.
modulates the intensity of LI, and the spread of LI with inter-glomerular distance. In
particular, LI seems to be more effective in MT at low conc.

each case, and the underlying effective GU connectivity is schematically represented by the
graph on the right. These results suggest that DSACs could have an important role in
promoting the formation of GU clusters in such a way to synchronize MTs within the same
cluster, but not between different clusters.

The rebound burst may enable MTs to precisely synchronize with a synchronous inhibitory input. This is likely conveyed via GCs. To
address this hypothesis, we have started by connecting a single GC to a single MC (Left panels) or MT (Right panels). Because of the
morphological differences, MCs or MTs fire asynchronously, even though they receive the same excitatory stimulus on their tuft dendrites
(Top panels). Single GCs do not affect significantly MC firing (Left panels), while MTs burst synchronously when they share GCs (Bottom,

Right panels). Conclusions
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This is the first model of the olfactory bulb that includes a realistic implementation of both middle tufted and mitral cell parallel output pathways, which has
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of synchronized glomerular units.

Natural odor inputs are represented in the OB in terms of MC firing. Because of GL and GCL combined actions,
odor learning decreases the relative spatial overlap among odors over time (Cavarretta et al., 2016).
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