AC Length Constant

Along a neurite $\frac{V_x}{V_0} = e^{-x/\lambda_{\omega}}$ where $\lambda_{\omega} = \sqrt{Z_m/r_a}$, Z_m = membrane impedance of a unit length of neurite, and r_a = resistance of a unit length of cytoplasm.

Assume f is sufficiently high that transmembrane current can be regarded as entirely capacitive $(f > 5/2 \pi \tau_m)$, i.e. for a neuron with $\tau_m = 30 \text{ ms}, f > 25 \text{ Hz}$). Then $Z_m \approx 1/j \omega C$ where C = capacitance of a unit length of neurite.

Thus at high frequencies
$$\lambda_{\omega} \approx 1/\sqrt{j\omega Cr_a}$$
 and $\frac{V_x}{V_0} \approx e^{-x\sqrt{j\omega Cr_a}} = e^{-x(1+j)\sqrt{\frac{\omega Cr_a}{2}}}$. The

real part of the exponent is the signal attenuation, and the imaginary part is the phase shift, so

$$\left|\frac{\frac{V_x}{V_0}}{V_0}\right| \approx e^{-x\sqrt{\frac{\omega Cr_a}{2}}}.$$

Substituting $r_a = R_i / \pi a^2$ and $C = 2\pi a C_m$, where a = radius of neurite, $R_i =$ cytoplasmic resistivity in Ω cm, and $C_m =$ specific membrane capacitance in $\mu f/cm^2$, we have

$$\frac{r_a C}{2} = \frac{1}{2} \cdot \frac{R_i}{\pi a^2} \cdot 2\pi a C_m = \frac{R_i C_m}{a}. \text{ Therefore } \left| \frac{V_a}{V_0} \right| \approx e^{-x \sqrt{\frac{\omega R_i C_m}{a}}} \text{ and the AC space}$$

constant is $\lambda_{\omega} \approx \sqrt{\frac{2}{r_a C \omega}} = \sqrt{\frac{a}{R_i C_m \omega}} = \sqrt{\frac{a}{2 \pi f R_i C_m}}$. If *a* is in µm, *f* in Hz, R_i in Ω cm, and

 C_m in µf/cm², the numerical result must be multiplied by 10⁵ to convert it to µm.

Example: consider a neurite with radius of 1 µm, $R_m = 50,000 \ \Omega \ \text{cm}^2$, $R_i = 100 \ \Omega \ \text{cm}$, and $C_m = 1 \ \mu\text{f/cm}^2$. The membrane time constant is 50 ms, so the frequency at which membrane resistive and capacitive current are equal is ~ 3.2 Hz. The DC length constant is $\lambda_{DC} = \sqrt{r_m/r_a}$, which turns out to be ~ 1500 microns. The AC length constant at 100 Hz is only 400 microns, roughly 4 times shorter.

Addendum: NEURON uses R_a to signify R_i , and neurite diameter is specified rather than radius. Thus in the context of NEURON models it is more convenient to rewrite the AC length constant

formula as
$$\lambda_f \approx \frac{1}{2} \sqrt{\frac{d}{\pi f R_a C_m}}$$
.