
Neuron splitting in compute-bound parallel

network simulations enables runtime scaling

with twice as many processors

Michael L. Hines1, Hubert Eichner2, and Felix Schürmann3

Computer Science1, Yale University, New Haven, CT
Max-Planck-Institute of Neurobiology2, Martinsried, Germany

Brain Mind Institute3, EPFL, Lausanne, Switzerland

March 5, 2008

Address correspondence to:
Michael Hines
michael.hines@yale.edu
1-203-250-0022

Keywords: computer simulation, computer modeling, neuronal net-

works, load balance, parallel simulation

1

Abstract

Neuron tree topology equations can be split into two subtrees and solved on
different processors with no change in accuracy, stability, or computational
effort; communication costs involve only sending and receiving two double
precision values by each subtree at each time step.

Splitting cells is useful in attaining load balance in neural network sim-
ulations, especially when there is a wide range of cell sizes and the number
of cells is about the same as the number of processors. For compute-bound
simulations load balance results in almost ideal runtime scaling. Application
of the cell splitting method to two published network models exhibits good
runtime scaling on twice as many processors as could be effectively used with
whole-cell balancing.

2

Introduction

Load balance is a necessary condition for efficient parallel simulation of net-
works of neurons. That is, since the overall speed of the simulation is rate
limited by the processor which has the most work to do, greatest efficiency is
achieved when the maximum workload is as close as possible to the average
workload.

Neuronal network simulations are often perfectly balanced by choosing
the number of each cell type to be an integer multiple of the number of
processors. If individual cell processing time does not vary too widely, or the
number of cells is much greater than the number of processors, a simple round
robin distribution algorithm analogous to card dealing is usually good enough
to divide the load reasonably uniformly among the available processors (cf
Migliore, et al, 2006). When the number of processors is such that only
a small number of cells can be on each processor, it is often sufficient to
iteratively choose the cell with the longest processing time and put it on the
least used processor. More sophisticated algorithms such as the Complete
Karmarkar-Karp algorithm (Korf, 1998) can also be employed.

Although investigators often choose to scale the network size with the
number of available processors to keep runtime more or less constant (weak
scaling), on occasion it is desirable to keep the problem size the same and
reduce runtime through the use of as many processors as is consistent with
strong scaling. Strong scaling is obviously impossible via whole-cell load
balancing when the number of processors is greater than the number of cells.
With heterogeneous size cells, strong scaling fails even earlier. Clearly, the
strong scaling regime can be extended to larger numbers of processors only
by splitting cells into smaller pieces.

Very strong coupling between adjacent compartment voltages demands
implicit methods for numerical stability with reasonable time steps and there-
fore a matrix equation must be solved every time step. Though the matrix
setup can obviously be parallelized down to the individual compartment level,
optimal solution of the tree matrix via Gaussian elimination is normally ac-
complished by a recursive, and therefore serial, algorithm, e.g. Mascagni and
Sherman (1996) or Hines (1984). This paper describes a method for split-
ting cells into two subtrees simulated on different processors with no change
in accuracy, stability, and computational effort, and with a communication
cost consisting of only two double precision values sent and received by each
subtree at each time step. The method is closely related to one discussed

3

in Hines (1994) in the context of Cray YMP vectorization. Since a cell can
be split at one of many locations, satisfactory load balance is routinely ob-
tained by filling a processor with cells to just below the average workload
and topping off with a split piece.

We compare the runtime scaling behavior vs number of processors for
two whole-cell load balance methods and the cell splitting method using two
published network models: a thalamocortical model by Traub et al (2005)
and a dentate gyrus model by Santhakumar et al (2005).

Methods

All simulations were carried out with the NEURON v6.1 simulation program
(Hines and Carnevale, 2007). The “splitcell” functionality is available when
NEURON is configured with the --with-paranrn option which requires pre-
installation of an implementation of the Message Passing Interface (MPI).
Performance tests were carried out on the EPFL IBM Blue Gene/L.

Load balance and cell splitting algorithms were tested by modifying two
published network models from the ModelDB section of the Senselab database
(http://senselab.med.yale.edu): Traub et al (2005), and Santhakumar et al
(2005). In order to focus on load balance with reduced use of computer
resources we scaled down the Traub model 10-fold and turned off gap junc-
tion interactions. This left a minimal model of 356 cells of 14 types with all
type ratios preserved. In all cases the parallel models produce quantitatively
identical spike times as their original serial counterparts. Complete model
code with modifications used in this paper is available from ModelDB with
accession number 97917.

Numerical methods for cell splitting

The most important efficiency attribute of spatially discretized neuron equa-
tions is that the number of arithmetic operations required to solve the tree
topology matrix equations is exactly the same as for a tridiagonal matrix
representing an unbranched cable with the same number of compartments
(cf Hines and Carnevale, 1997). Optimal Gaussian elimination triangularizes
the matrix proceeding from leaves to the root of the tree and back substi-
tutes in reverse order from root to leaves. At a branch point, one cannot
continue the triangularization process till the subtrees at the branch have

4

been triangularized. Conversely, one cannot start on the back substitution
of the subtrees of a branch point until after the parent cable has been back
substituted. Any compartment can serve as the root of the tree. In the sim-
plest case of an unbranched single cable, it takes exactly the same number of
operations to triangularize simultaneously from the two ends to some middle
point and back substitute from there as it does in the normal sequence of
triangularization from one end to the other.

The current balance equation of the ith compartment has the form

apVp + diVi +
∑

c

acVc = bi (1)

where the Vi, Vp, and Vc refer to the voltages of this, the unique parent,
and all the child compartments respectively. The a coefficients are constants
depending only on the shape of the compartments, capacitance, and axial
resistance. The d and b are evaluated using only parameters and variables
known at the beginning of the time step in the ith compartment. After
triangularization has eliminated the effect of child voltages on the current
balance equations, each compartment equation contains only two terms, one
involving this compartment voltage and one involving the parent voltage,
with changed values for di and bi

apVp + d′

iVi = b′i

and, since the root compartment has no parent

Vr = br/dr

which can then be substituted into each of the root’s child equations.
It is clear that there is no impediment to simultaneous triangularization

of each subtree of the root compartment. The only question is precisely
how to handle the arithmetic operations that modify the root compartment
equations since one of the child compartments is on a different processor. One
possibility is to split a cell at the boundary between two compartments. In
this case, there are really two root compartments and after triangularization
on each processor, the problem is to solve the two root equations which are
coupled by the conductance between the centers of those compartments. I.e.

dr1Vr1 + a12Vr2 = br1

a21Vr1 + dr2Vr2 = br2

5

Here, to complete the triangularization, the processor handling root 1 needs
dr2 and br2 from the processor handling root 2 and vice versa.

The other possibility is more in keeping with NEURON’s semantics of the
“connect” statement. That is, imagine that two trees, simulatable in isolation
have their roots connected by a zero resistance wire. This is tantamount to
dividing the root compartment itself into two pieces and full triangularization
ends up with two equations of the form

dr1Vr + ir = br1

dr2Vr − ir = br2

where ir is the current flowing in the (virtual) wire connecting the roots. In
practice, ir is not computed and uses no memory location. Instead, the two
equations are added together by each machine exchanging its triangularized
d and b and adding them to their corresponding quantities so that each
machine redundantly solves

(dr1 + dr2)Vr = (br1 + br2)

Considering Gaussian elimination only, the number of operations required
for the two methods is almost identical. However, for several reasons we
prefer splitting the root node itself despite the apparent redundancy of both
processes computing the same value for Vr. First, as already mentioned,
the second method corresponds to the semantics of the NEURON connect
statement

connect child(0or1), parent(x)

which represents the connection of either end of a child cable to any loca-
tion of the parent cable without introducing any extra conductance at the
connection point. The concept of connecting two trees together by a wire
is somewhat simpler than requiring both processes to compute the constant
coupling coefficient which depends on length and diameter of both compart-
ments. Second, and more substantively, splitting at the boundary between
compartments requires, in addition to the exchange of the triangularized d
and b, an exchange of the values of Vr1 and Vr2 at the beginning of the time
step since evaluation of br1 during the setup phase depends on the previ-
ous step’s value for Vr2 and vice versa. It should also be mentioned that,
although NEURON does not currently support splitcell (or gap junction)

6

simulation using the variable step methods, because synchronization of the
event queues on different processors has not yet been implemented, the vari-
able step method setup phase which involves evaluation of the right hand
side of

cy′ = f(y, t)

does require an estimate of the value of the ir current and so it is not clear at
present whether the strategy of splitting the root node will retain its setup
advantage over splitting at a compartment boundary. The answer depends
on details of the way NEURON handles evaluation of the voltage at the zero
area nodes at the ends of sections.

NEURON support for splitcell computation.

In most cases the parent location in a connect statement is also the 0 or
1 end of the parent and that is the situation captured by an extension to
the /tt ParallelContext class that NEURON uses to manage interprocessor
communication. Assuming the object reference, pc, references an instance of
the ParallelContext class, then a virtual interprocessor connection is made
between two trees by a pair of corresponding

rootsection { pc.splitcell(otherhost) }

Here, it is an error if the rootsection is connected to a parent section, i.e.
is not the root of its tree. The argument, otherhost, must be pc.id plus or
minus 1 and the splitcell method call makes the connection to the location
identified by the corresponding call to splitcell on the other host. It can
be seen that we purposely limit a cell to be split between hosts i and i+1.
Thus, a host can deal with at most two split cells, one part of one cell on host
i-1 and one part of the other cell on host i+1. This allows MPI Send and
MPI Recv to take advantage of the Blue Gene torus topology to minimize
communication time. It sacrifices the obvious possibilities inherent in choos-
ing a branch point as the root node and dividing a cell into three pieces. It
also disallows the possibility of splitting a cell and simulating the two pieces
in a single process. But the latter is more or less pointless and the same
result can be obtained with the connect statement.

Splitcell is well suited to the practical issues of specifying cells in the
NEURON environment. That is, most models define cell types that are
instantiated as a whole and it is desirable to split different instances of the

7

same type at different locations. Thus it is proper to separate the code that
defines a cell from the code that disconnects the two subtrees, destroys the
portion of the cell not needed on a host, re-roots the remaining subtree so
that the disconnect point is the root node, and calls the splitcell method on
the root of the remaining subtree. A wrapper method has been provided in
NEURON’s tool library to carry out these subsidiary operations so that the
cell is split properly if the same statement is executed on the two processes
that have instantiated a cell. Clearly, there is a good deal of wasted effort
in setting up an entire cell and then throwing away half of it. But in a
network context, splitting is a small portion of the total network setup time,
which in turn is very small compared to runtime. Also, if administrative
issues can be overcome in regard to processes creating only the subtrees
they need, there is no reason one cannot connect those subtrees with the
ParallelContext.splitcell method.

Results

Load Balance

Cells differ in the amount of processing time they add to network simulation
runtime due to differences in number of cell compartments, types of channels
in a compartment, the number and complexity of synapses, and the number
of spikes handled by the synapses on a cell.

The simplest whole cell load balance strategy ignores differences in in-
dividual cell processing time and distributes cells (each one identified by a
global unique identifier, gid) according to the round robin or card dealing
algorithm

for (gid = pc.id; gid < ncell; gid += pc.nhost) {

// create cell associated with gid

}

where pc.id and pc.nhost refers to the MPI rank and total number of MPI
processes respectively. This is the recommended default method for parallel
NEURON simulations and, based on the measured computation time on each
processor, provides an initial measure of load balance to assess whether it
is worthwhile to try methods that are more complicated but might yield
superior performance.

8

The simplest load balance algorithm which takes into account differences
in cell processing time is the “longest processing time” (LPT) algorithm in
which one iteratively chooses the largest cell and puts it on the currently
least used processor (cf Korf, 1998). The use of LPT, as well as our splitcell
load balance method described below, requires a weight assignment as close
as possible to the actual computation time required by a cell during a sim-
ulation. Unfortunately, such fine grain measurement even at the whole cell
level during a trial simulation introduces significant measurement artifacts
and we have found it useful to use more easily measured proxies to estimate
the relative computation time that would result from a given partition.

We have tested several proxies, e.g. number of NEURON sections, num-
ber of compartments, and number of equations. But the proxy or complexity
measure that corresponds most closely to actual computation time is to mea-
sure the computation time of a 100 compartment cable with each membrane
channel or mechanism inserted separately and normalize to the computation
time of the cable with no channels present. We do this also for synapses by
instantiating one per compartment with the caveat that since no spikes are
handled, it may underestimate the computation time added by a synapse in
the actual simulation.

With a complexity measure for each mechanism type and each elementary
compartment (an empty compartment has complexity 1) it is straightforward
to assign a total complexity value to each compartment, each cell as a whole,
Ci, and the whole network, Cn. The load balance problem can then be
expressed as partitioning the network so that the maximum complexity on
any processor is as close as possible to Cn/nhost.

<Figure 1 about here>

Figure 1 shows the number and complexity range of the cells which are to
be distributed among the processors for the Santhakumar and Traub models.
In order to obtain the complexity data for each cell, we perform a complete
setup of the entire network, including synapses, using the default round robin
distribution. Each host appends to a file the complexity of each cell on that
host. There are 5 distinct cell sizes for the Santhakumar model. The single
cell with complexity 0 is an artificial cell used for stimulation. The 15 largest
are 17 compartment Mossy cells and the most common are 9 compartment
Granule cells. The location and number of synapses does not vary within
a type. The Mossy cell complexity of 1487 means that we predict it will

9

take 1487 times longer to solve the equations for one of those cells than
to solve a single empty compartment. The Traub model has 14 cell types.
Within a type, number and locations of synapses are chosen randomly from
type-to-type projection dependent distributions. For the particular instance
shown here, there were 137 distinct complexity values and the 356 instances
of those values are displayed in a histogram with bin size 50. Tufted deep
IB cells with 61 compartments are the most common cell type, 80 of them.
The 10 largest are thalamocortical relay cells with 137 compartments. The
complexity information in the “whole-cell” file is used by the LPT algorithm
to determine the distribution of cells on processors.

In addition to whole-cell complexity, each host also determines for each
cell the set of complexity pairs for each possible split point. A branch point
with a parent and two children adds three distinct subtree pairs, (parent
alone, child1 + child2), (parent + child1, child2), and (parent + child2,
child1) or 6 distinct complexity values to the set of possible split cell com-
plexities. At branch points with more than three connected sections, typically
at the soma which may have a dozen branches, nb, the nb ∗ (nb − 1)/2 pos-
sible complexity pairs were arbitrarily reduced to 2 ∗ nb examples consisting
of successive addition of the least or greatest remaining complexity subtree
to the parent subtree.

<Figure 2 about here>

The left side of figure 2 shows the distinct split piece sizes for the cell
types of the Santhakumar model.

The total complexity of each cell along with their sets of split piece com-
plexity data was used to decide upon a distribution of cells and split cells on
nhost processors where the maximum complexity on a processor was as close
as feasible to the average complexity and with the constraint that only one
cell can be split between processors i and i+1. Because of this constraint as
well as the ability to split a cell at one of many locations, LPT is not directly
applicable and we instead attempted to find accurately balanced partitions
using simplistic heuristics which, nevertheless, were reasonably successful on
our present networks.

The principle heuristic is to fill one processor at a time with the largest
remaining whole cells. When a whole cell would cause the processor to exceed
its maximum complexity, top off the processor by choosing the optimum split
piece of that whole cell such that the processor has less than its maximum
complexity. Then begin filling the next processor with the left over piece.

10

The result of the heuristic is illustrated on the right side of figure 2 where
the maximum complexity per processor was chosen to be 3% larger than the
average complexity, Cn/256 (Cn = 402493), for the 528 cell Santhakumar
network. In this case, the fill algorithm succeeded in that less than 256
processors were needed. The last piece (along with the 0 size stimulus) is
placed on processor 252 and the last 3 processors are empty. Apart from
those, processor 15 has the least load with a complexity of 1325. Processor
28 has the greatest load with a complexity of 1626. Notice that processor
0 is filled with a whole Mossy cell and topped off with the smallest piece
of a second Mossy cell. Processor 1 is filled with the remaining (largest)
piece of the second and the next to smallest piece of the third Mossy cell.
If more than nhost processors are required by the fill algorithm, then the
maximum complexity per processor has to be increased and we try again.
For a 2% maximum above average complexity, the algorithm happens to
need 262 processors, hence the acceptance of a 3% load imbalance for a 256
processor allocation.

The distribution information is written to an nhost specific file with a
format such that it is a straightforward matter for each processor to quickly
find the relevant section of the file and read only the information for proces-
sors i − 1 and i to determine which cells are to be instantiated on processor
i and, if split, which portion is to be retained.

Performance

Figure 3 shows the runtime performance of the 528 cell Santhakumar and
356 cell Traub models as a function of number of processors using the three
load balance algorithms described above.

<Table 1 about here>

Table 1 shows the load imbalance of the distributions chosen by the Round
Robin, Least Processing Time, and Split cell algorithms. The last two
columns in Table 1 compare the predicted balance of the split cell method
and the balance measured during a simulation and demonstrate that the com-
plexity values derived from the processing time for individual channel and
synapse types are reasonable proxies for total computation time. Of course,
for 512 processors there are more processors than Traub model cells and so
the Round Robin and Longest Processing Time algorithms yield identical
run times.

11

<Figure 3 about here>

On up to 128 processors, the LPT and Splitcell algorithms generate distribu-
tions that are very well load balanced. The total complexity and maximum
cell complexity for Santhakumar are 402493 and 1487 respectively so that
whole cell load balance is impossible with more than 270 processors. For
Traub, total complexity is 1.13e6 with maximum cell complexity 4740 so
that the whole cell balance limit is below 238 processors. Given these total
complexities along with the 300ms and 1000ms simulation times with time
steps of 0.1ms and 0.025ms, one expects the Traub model to have a runtime
38 times longer than the Santhakumar model. That is consistent with the
observed computation time ratio of 37. Although the spiking patterns of the
two models are very different they have a similar network spiking rate, ap-
proximately 12 spikes/ms and 9 spikes/ms for the Traub and Santhakumar
models respectively. Thus we expect spike exchange overhead to be similar
for the two models and this, along with our complexity measure indicating
the almost three fold greater complexity of the Traub model, explains the
three fold greater (runtime/computation - 1) value for the splitcell balanced
Santhakumar model for 256 and 512 processors. That is, for a balanced
model, computation time is proportional to complexity, spike exchange time
is proportional to spike rate, and splitcell matrix communication time is pro-
portional to number of time steps per millisecond. The more complex Traub
model is thus performance limited by its complexity at least up to 512 proces-
sors whereas Santhakumar spike exchange overhead is becoming noticeable
at 256 processors

Discussion

We have shown that splitting a cell into two pieces on separate processors
nevertheless allows Gaussian elimination to be carried out with almost no
increase in computational effort and no change in accuracy or stability. Split-
ting cells into two pieces and doubling the number of processors can reduce
runtime by a factor of two. This performance doubling is realized when com-
putation time is much greater than spike exchange time and the overhead
of per time step exchange of the triangularized diagonal and right hand side
elements of subtree roots. In this regime, when load balance is achieved,
runtime performance displays nearly ideal scaling behavior.

12

It is worth discussing similarities and dissimilarities of the presented split
cell method with how gap junctions are treated in a simulation. Most im-
portantly, gap junctions couple pairs of compartments so that the equations
no longer have a tree topology. Yet, gap junctions have a relatively large
resistance compared to the resistance between the centers of adjacent cable
compartments so that the extra off diagonal Jacobian elements tend to be
very small relative to the diagonal and, for reasonable time steps, can be
ignored during Gaussian elimination without significantly affecting stability
or accuracy. Thus, gap junction currents affect only the right hand side and
diagonal of the current balance equation 1 and cells can continue to be split
at any compartment. Interprocessor gap junctions require an exchange of
voltages on either side of the gap at the beginning of each time step. How-
ever, strongly coupled split cells cannot be reconnected using the gap junction
method without introducing serious stability and accuracy problems that can
only be overcome through the use of much smaller time steps. Fortunately,
the message payload doubling from one to two double precision values does
not increase MPI Send/Recv time so the split cell method makes it possible
to maintain accuracy and stability with no increase in communication time
over that of a gap junction.

Longitudinal ionic diffusion presents a case of even weaker coupling than
that of gap junctions and an exchange of ion concentration state variables
is certainly sufficient without causing numerical instability. On the other
hand, simulations involving extracellular fields involve very tightly coupled
equations with a grid topology and are therefore outside the scope of the pre-
sented method. Mechanisms such as radial diffusion, most second messenger
cascades, and channel gating states, do not exhibit inter compartmental cou-
pling except indirectly through membrane potential and therefore simulations
involving such methods are not affected by cell splitting.

Because of per time step communication overhead, practical use of the
split cell method (as well as gap junctions) requires hardware with a high
speed interconnect. Performance is likely to be poor on Beowulf clusters with
Ethernet connections slower than 1 gigabit/sec.

A significant benefit of the double precision quantitative identity (modulo
round off error due to different ordering for Gaussian elimination) between
split and whole cell method compartment voltages during a simulation is the
ease in diagnosing errors that result in non-identity of network spike patterns.
Such errors typically occur during the setup of connections between source
cell and target synapse because of the extra user logic involved in determining

13

which source cell split piece contains the source location and which target
cell split piece contains the synapse location.

Minor differences between predicted load balance via the complexity proxy
and measured load balance during a simulation (last two columns in Table
1 and the RR, LPT 512 processor Traub items) can be attributed in part to
several additional factors that contribute to computation time such as spike
queue management, and the synapse calculations that occur on delivery of
a spike. Computation time is also sensitive to high speed cache misses that
depend on the problem size and memory usage patterns but this may be
less of a factor for the higher number of processors since in that case each
processor’s portion of the problem fits entirely into the cache.

The limitation of splitting into two pieces essentially limits the method’s
benefits to at most a doubling of the number of processors on which a given
simulation can be usefully performed. In simulations with identical numbers
of cells and processors, the most complex cell is the rate limiting step. There-
fore, two-fold speed-up with the split cell method can only be achieved if the
most complex cell indeed can be split into two equal pieces. Particularly, in
the context of very detailed simulations, such as the neocortical simulations
of the Blue Brain Project (Markram, 2006), certain cell types can be more
than twice as complex as the average cell (e.g. detailed layer 5 thick tufted
pyramidal cells exhibit substantially more complex dendrites than layer 2/3
cells). Thus, being able to split cells into more than two pieces is strongly
desirable and motivated the extension of the presented method. Fortunately,
Gaussian elimination is generally a small portion of the overall computation
time so that an extension of the method to split a tree at many nodes into
many pieces, even though it implies a significant Gaussian elimination com-
plexity increase, means one can usefully increase the number of processors by
up to a factor of 8 — even for large single cell models. A subsequent paper
presents the extended method (Hines, 2008).

Acknowledgments

Research supported by NIH grant NS11613 and the Blue Brain Project.

14

References

Hines, M., 1984. Efficient computation of branched nerve equations. Int J

Biomed Comput. 15, 69-76.

Hines, M., 1994. The NEURON simulation program. In: Skrzypek, J.
(Ed.), Neural Network Simulation Environments. Kluwer Academic
Publishers, Norwell, MA, pp. 147-163.

Hines, M. L. and Carnevale, N. T., 1997. The NEURON simulation envi-
ronment. Neural Comput. 9, 1179-1209.

Hines, M. L. and Carnevale, N. T., 2007. Translating network models to
parallel hardware in NEURON. J Neurosci Meth. (accepted)

Hines, M. L., Markram, H. and Schürmann, F., 2008. Fully implicit parallel
simulation of single neurons. J Comput Neurosci. (submitted).

Korf, R. E., 1998. A complete anytime algorithm for number partitioning.
Artificial Intelligence. 106, 181-203.

Markram, H., 2006. The blue brain project. Nat Rev Neurosci. 7, 153-160.

Mascagni, M. and Sherman, A., 1996. Numerical Methods for Neuronal
Modeling. In: Koch, C. and Segev, I. (Eds.), Methods of Neuronal

Modeling: From Ions to Networks. MIT Press, Cambridge, MA.

Migliore, M., Cannia, C., Lytton, W. W., Markram, H. and Hines, M. L.,
2006. Parallel network simulations with NEURON. J Comput Neu-

rosci. 21, 119-129.

Santhakumar, V., Aradi, I. and Soltesz, I., 2005. Role of mossy fiber sprout-
ing and mossy cell loss in hyperexcitability: a network model of the
dentate gyrus incorporating cell types and axonal topography. J Neu-

rophysiol. 93, 437-453.

Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F.
E., Roopun, A., Bibbig, A., Wilent, W. B., Higley, M. J. and Whit-
tington, M. A., 2005. Single-column thalamocortical network model
exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts.
J Neurophysiol. 93, 2194-2232.

15

Figure Legends

Figure 1: Cell complexity variation for the Santhakumar and reduced Traub
model. For the Santhakumar model there are 500 cells with complexity 731.

Figure 2: Left: Distinct split piece sizes for the cell types of the the San-
thakumar model. The number of cells for each type is indicated below the
type label. Right: Example of filling 256 processors with 528 cells with 3%
balance tolerance. The vertical lines with marks indicate the cell and piece
sizes that add up to the load on selected (labeled by processor id) and adja-
cent processors. The horizontal line with complexity 1572 indicates average
processor load.

Figure 3: Run time performance in seconds vs number of processors for the
Santhakumar and Traub models and for three load balance algorithms. RR
is Round Robin, LPT is Longest Processing Time, and Split is for some
cells split into two pieces and simulated on different processors. Because the
Traub model has 356 cells, RR and LPT methods have the same runtime for
512 processors. Open circles show the average computation time (same for
all balance methods). Dashed line shows ideal speedup (slope is -1 on the
log2 vs log2 plots) relative to average computation time with 32 processors.

16

Tables

Table 1: % load imbalance for Traub and Santhakumar models. Imbalance
for the Round Robin (RR) and “Split CT” column is derived from the max-
imum and average processor computation time of a simulation. LPT and
“Split CX” columns show the predicted imbalance derived from the com-
plexity proxy.

Model #CPU RR LPT Split CX Split CT
Traub 32 6 5 0 1

64 15 6 1 2
128 31 8 2 4
256 88 37 3 6
512 120 115 11 13

Santhakumar 32 5 4 0 2
64 16 5 1 2

128 37 16 1 2
256 78 39 3 5
512 158 89 4 6

17

2000 3000 4000 5000
0

20

40

60

80

#Cells

Traub

Complexity

#Cells

Santhakumar

Complexity
0 500 1000 1500 2000

0

5

10

15

500

Figure 1

18

0

500

1000

1500

Santhakumar

Mossy

(15)

Granule

(500)

Basket

(6)(6)

Hilar

Complexity

0

500

1000

1500

2000

1 15 25128

Complexity

Processor ID (MPI_rank)

Figure 2

19

32 64 128 256 512
1

2

4

8

16

32

#CPU

LPT
Split

RR
Santhakumar

sec

32 64 128 256 512

64

128

256

512

1024

32

#CPU

Split

RR

Traub

sec

Figure 3

20

