
Fully Implicit Parallel Simulation of Single

Neurons

Michael L. Hines1, Henry Markram2 and Felix Schürmann2
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Abstract

When a multi-compartment neuron is divided into subtrees such that no sub-
tree has more than two connection points to other subtrees, the subtrees can
be on different processors and the entire system remains amenable to direct
Gaussian elimination with only a modest increase in complexity. Accuracy
is the same as with standard Gaussian elimination on a single processor.

It is often feasible to divide a 3-d reconstructed neuron model onto a
dozen or so processors and experience almost linear speedup. We have also
used the method for purposes of load balance in network simulations when
some cells are so large that their individual computation time is much longer
than the average processor computation time or when there are many more
processors than cells. The method is available in the standard distribution
of the NEURON simulation program.
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Introduction

Hines et al. (2008), from now on referred to as the previous paper, demon-
strated the practical usefulness of splitting cells into two subtrees in compute-
bound parallel network simulations when load balance is otherwise impos-
sible. With a communication cost of a pair of MPI Send/Recv operations
and with a message size of only two double precision values, per split-cell,
per time-step, the neuron compartment equations could be solved with no
change in accuracy or stability, and with essentially no increase in number of
arithmetic operations during Gaussian elimination. The split-cell method is
limited to at most a doubling of the number of processors on which a given
simulation can be usefully performed but it is intriguing that computation
time (as opposed to communication time) continued to dominate the run-
time for our published test models even with the largest processor numbers
for which load balance was attainable. Therefore the ability to split cells
into more than two pieces is strongly desirable. The hope is that Gaussian
elimination of the distributed compartment equations, which is necessary for
numerical stability, will continue to be a small part of the runtime.

Rempe and Chopp (2006) present a predictor-corrector method which is
very efficient but at the cost of an inexact solution at the branch points.
Mascagni (1991) solves the linearized equations exactly by domain decom-
position in which tridiagonal systems are solved for compartments between
branch points and a dense linear system is solved for the branch points.
Mascagni recommends the method for the simulation domain where there
are few branch compartments relative to compartments between branches.
Heglund (1991) presents a parallel algorithm for solving an unbranched ca-
ble and provides a comprehensive discussion of its complexity and numerical
stability.

The parallel Gaussian elimination algorithm we have settled on is a fairly
straightforward extension of the single split-cell algorithm presented in the
previous paper. It differs from Heglund in its suitability to handling tree
structures. It differs from Mascagni by including a constraint on splitting
which reduces the size and complexity of the branch point matrix.

Our Gaussian elimination strategy divides the tree topology matrix into
subtrees with the constraint that no subtree has more than two distinct con-
nection points. In the numerical methods section we show that this constraint
allows an attractive compromise between the flexibility of arbitrary division
and the efficiency of the single split method. Since the computation and
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communication cost is proportional to the degree of splitting, the method
is most effective when the cell is split into the minimum number of pieces
required for load balance.

Into how many pieces can a cell be usefully split? The increased commu-
nication cost imposed by the multisplit method is paid every time step. This
is in very negative contrast to spike exchange communication, which needs
to take place only at minimum spike delay intervals consisting of many time
steps (e.g. Morrison et al., 2005). Furthermore, during a single cell sim-
ulation, all processors but one are necessarily idle while they wait for that
processor to finish solving the reduced tree matrix. Clearly the method has
to prove itself on a set of uncontrived models. This paper exhibits a prac-
tical heuristic for multiple piece cell division and load balancing for single
cell simulation on multicore (shared memory) workstations and for network
simulation on supercomputers when the number of cells is much less than
the number of processors.

Methods

All simulations were carried out with the NEURON v6.1 simulation pro-
gram (Hines and Carnevale, 2007). The “multisplit” functionality is avail-
able when NEURON is configured with the --with-paranrn option which
requires pre-installation of an implementation of the the Message Passing
Interface (MPI). On multicore machines we used MPICH2 (http://www-
unix.mcs.anl.gov/mpi/mpich) configured with the --with-device=ch3:nemesis
option which drastically reduces MPI communication time under shared
memory compared with the default socket device.

Performance tests for single cell simulations were carried out on an Intel
x86 64 dual-processor dual-core 3.2 GHz Dell Precision 490 and a SGI Prism
Extreme with 32 1.5GHz Itanium2 processors and 300GB of shared memory.
Network simulations were run on the 8192 processor (700MHz PowerPC 440)
EPFL IBM Blue Gene/L.

Parallel single cell simulations to test the multisplit algorithm can be
carried out on any single cell ModelDB model without modification and the
examples we chose were the CA3 pyramidal neuron model of Lazarewicz et
al (2002), the highly inhomogeneous CA1 pyramidal neuron model of Poirazi
et al (2003), and a large Purkinje cell model by Miyasho et al (2001). The
first network model used to test the multisplit algorithm in conjunction with
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load balancing is that of Traub et al (2005) using code modified from the
ModelDB section of the Senselab database (http://senselab.med.yale.edu)
and is the same as described in the previous paper (gap junctions turned off).
To compare the relative overhead of spike exchange, distributed multisplit
neurons, and gap junction communication we also ran simulations with gap
junctions turned on. The second network model is a version of the neocortical
column simulations performed within the Blue Brain Project. Unlike the first
network model, here, the multisplit algorithms help balance the processor
load in the scenario where the number of cells essentially equals the number
of processors but the cell complexities are varying substantially.

In all cases, the parallel models produce quantitatively identical spike
patterns or voltage trajectories compared to their serial versions. Model
code for parallelization of the single cell models and links to the network
models are available from ModelDB with accession number 97985.

Numerical methods

Spatially discretized neuron equations have a tree topology in which the
current balance equation of the ith compartment has the form

apVp + diVi +
∑

c

acVc = bi (1)

where the Vi, Vp, and Vc are the voltages at the end of a time step of this,
the unique parent, and all the child compartments respectively. The a co-
efficients are constants depending only on the shape of the compartments
and axial resistance. The d and b are evaluated using only parameters and
variables known at the beginning of the time step in the ith compartment. (A
gap junction connecting compartments i and j solved by the modified Euler
method, adds a term to bi that requires the value of Vj at the beginning
of the time step and does not affect the topology of the equations.) On a
serial machine, the number of operations required to solve the tree topology
matrix equations is exactly the same as for a tridiagonal matrix represent-
ing an unbranched cable with the same number of compartments (Hines and
Carnevale, 1997). The previous paper showed that this holds also when a
cell is split into two pieces and solved on different processors.

To illustrate the Gaussian elimination operations we use a kinetic scheme
diagram style in which an arrow (single or double sided) expresses the inter-
action directions, between the states, denoted as circles. Thus a two com-
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partment model with the equations

diVi + aijVj = bi

ajiVi + djVj = bj

is represented as
©i ←→©j

and, after a triangularization step that eliminates the effect of the Vj on
equation i, we draw,

©i −→©j

to express

d′

iVi = b′i
ajiVi + djVj = bj

where d′

i = di − ajiaij/dj and b′i = bi − bjaij/dj. Notice that equation i no
longer depends on other compartments and back-substitution eliminates the
effect of the Vi in equation j to result in the solved system

©i ©j

We need one other interaction notation due to a peculiarity of the NEU-
RON program. That is, isolated subtrees are connected by a virtual wire
instead of resistors so that we draw

©i ©j

with no arrowheads to signify
Vi = Vj

Normally, when two NEURON sections

©←→©←→© ©←→©←→©

are connected together

©←→©←→© ©←→©←→©

the redundant nodes are combined

©←→©←→©←→©←→©
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However, when the sections being connected are not on the same machine,
both the connecting nodes are retained and eliminating the interaction term
introduced by the wire is accomplished by adding the equations together
(Hines et al, 2008).

Instead of attempting a mathematical description of the parallel Gaussian
elimination method, it will be more understandable to use an example which
shows how the major issues are resolved.

A prerequisite to the presented method is the division of the neuron mor-
phology into subtrees so that no subtree has more than two connection points
to other subtrees. This constraint follows only from practical considerations:
Allowing only one connection point makes it impossible to divide a tree into
many subtrees. It will become clear that allowing more than two connection
points significantly increases the Gaussian elimination complexity.

[Figure 1 about here]

Figure 1 illustrates the compartment representation of a specific branched
neuron along with its exemplary division into 8 subtrees (other divisions that
satisfy the at-most-two-connection-points-to-other-subtrees rule are possible)
connected by wires and which may be distributed in any manner on from 1
to 8 processes. As implied in the transition between Figure 1B and Figure
1C, when a subtree is disconnected from its parent tree, each subtree retains
at least the portion of the shared node that includes the interaction term
or terms from the adjacent nodes in the subtree. Terms in the split node
involving channels and synapses may be distributed according to convenience.
In practice they follow the section to which they belong.

[Figure 2 about here]

Gaussian elimination is carried out in several phases. The result of phase
1 is illustrated in Figure 2B and consists of triangularizing each subtree as
much as possible using the optimum leaf to root ordering. For subtrees
with only one connection point, this triangularization is complete. But for
subtrees with two connection points, optimum triangularization stalls when
it reaches any point on the path between the two connection points. The
resulting submatrix along the path has, in fact, exactly the tridiagonal form
of an unbranched cable and we call it the backbone path. The problem,
of course, is that one cannot complete the triangularization from either end
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of the backbone path unless one first eliminates terms from the connecting
subtrees. This can be trivially done if all the subtrees connected to one end
of the backbone path themselves have only one connection point (since their
triangularization is complete) but not if one of the connecting subtrees has
two.

The second phase is to transform the tridiagonal submatrix of each back-
bone path into a submatrix in which the backbone compartments are affected
only by the two end compartments. The result is illustrated in Figure 2C
and has an “N” topology in which interior compartments depend only on the
ends but the two ends must be solved simultaneously.

During the third phase, each subtree sends the equations that still contain
interaction terms, i.e., d′ and b′ of the triangularized root of each subtree that
has only one connection point, and the 2x2 matrix elements and right hand
sides of the backbone end points. Equations of compartments connected by
wires, are added together and the result, illustrated in Figure 2D, is called
the reduced tree matrix. The reduced tree matrix is solvable by classical
optimal Gaussian elimination. The voltages are then sent back to the relevant
subtrees, resulting in Figure 2E which is fully triangularized.

The final two phases are: back-substitute the two end compartments
of the backbone path, Figure 2F, and complete any remaining tree back-
substitutions.

The reasons for restricting the number of connection points on a subtree
to two or less are now apparent. First, transforming the simple tridiagonal
like tree into a topology with more than two endpoints greatly increases the
number of operations needed. Two endpoints are bad enough — the trans-
formation into an N topology of an n compartment backbone takes 2(n− 2)
divisions and 6(n− 2) multiplications without moving triangularization for-
ward at all. This, along with backbone back substitution, is the principle
computational cost of the method, asymptotically increasing by 3/2 the num-
ber of divisions and by 8/3 the number of multiplications normally required
by the backbone elements. Second, for m connection points on a subtree,
a dense matrix equation of rank m must be transferred for addition to the
reduced matrix. Third, the reduced matrix would not have a tree topology.

NEURON support for multisplit computation.

To support parallel simulation of individual neurons with the multisplit
method described above, NEURON’s ParallelContext class was extended
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with the method

section ParallelContext.multisplit(x, sid)

which specifies that the compartment of the section containing position x
(0 <= x <= 1) is connected by a “virtual” wire to all the other locations
having the same positive integer split identifier, sid. The sid for a split point
must be globally unique across all processes but is completely independent
of other integer identifiers such as the spike source identifier or cell identifier
used for spike exchange. Error messages are generated if the number of split
points on a tree is greater than two or if the multisplit connection topology
contains a loop, i.e., the reduced matrix is not a tree. Trees do not have to be
in different processes in order to be connected by multisplit and that makes
both load balancing and debugging easier. After every virtual connection is
specified, the no-argument version of ParallelContext.multisplit() must
be called by all processes to set up internal data structures and the MPI
Send/Recv communication pattern. The no-argument call must be made
even by processes with no multisplit cells in order to allow completion of
several MPI collective calls needed to analyze the connection pattern.

To use multisplit, it is not necessary to change the code that defines cell
types. It is usually easiest to create the entire cell in any process which
needs any piece of the cell, disconnect the pieces, and throw away all except
those pieces to be simulated in that process. For single cells, this roughly
doubles the cell creation portion of the setup time and makes it independent
of number of processes. But that increase is generally small compared to
runtime savings. For networks, setup time usually continues to be inversely
proportional to number of processors and is, in any case, normally dominated
by the time taken to setup network connections.

A number of administrative issues become more complicated in a mul-
tisplit simulation, especially for networks, and some more or less general
idioms have been developed to manage the extra complexity. First, divided
cells make the notion of global cell identifier (Morrison et al., 2005) somewhat
ambiguous. To make spike coupled network connections between undivided
cells, the global cell identifier (gid, see Migliore et al, 2006, for an extended
discussion of its role in a NEURON context) identifies both a whole cell and
its normally unique spike detection location. In its role as spike detection
location, the gid is used as the source of a NetCon and is internally critical
in making sure a spike is delivered to the proper synapses. In its role as cell
identifier, it is contingently employed by the user code to determine if the
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cell exists in a process and, if so, to retrieve a reference to the cell object. For
a multisplit cell, we use the old whole cell gid (call it the base gid) for the
spike detector and the pruned cell object where that spike detector exists.
For the other pruned cell objects containing different subtrees, an idiom that
has worked well in practice is to invent a

thisprocess_gid = base_gid + index*maxgid

where maxgid is greater than the largest base gid and the index is the
smallest piece index left in the pruned cell object. The virtue of this map-
ping is that it is easy to create functions that return the base gid from the
associated gid on this process and vice versa. So, as spike detector, the base
gid must be used in the call on the processor where the spike source location
exists

pc.cell(base_gid, spike_source)

as well as the calls on the processors where the synapse targets exist

netcon = pc.gid_connect(base_gid, target)

where pc is a reference to a ParallelContext instance. On the other hand,
retrieval of a target reference, or creation of the target synapse from base gid

and section name information, requires getting a reference to the pruned cell
using the thisprocess gid and, if it exists, checking whether the section
exists in the pruned cell using one of the variants of

if (section_exists("section_name", cell_object)) { ... }

Other issues tend to have uniform solutions that have been encapsulated
in standard library procedure calls. These include the determination of com-
plexity, determination of split points and subtrees of a whole cell so that
no subtree is larger than a maximum size, determination of a load balanced
distribution of pieces on available processors, and pruning away subtrees
not belonging to a given cell on a given process and performing the inter-
and intra-processor reconnections with pc.multisplit. Note that an intra-
processor reconnection could be accomplished in principle with the standard
NEURON connect statement but at the cost of even further administrative
complication.
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Results

Load balance

As justified in the previous paper, load balance is the first priority for efficient
compute-bound parallel simulation. We also showed that a simple proxy that
assigns a complexity value to each compartment allows reasonably accurate
prediction of processor computation time and thus makes static load bal-
ancing feasible. In that paper the severe restrictions on splitting required a
special load balance algorithm. With the multisplit method, however, a cell
may be split into pieces in a very large number of ways. Though the precise
count is complicated by the constraint that a subtree can have no more than
two connection points, the fact that a branch point with 2, 3, or 4 connected
NEURON sections can be split (or left alone) in 2, 4, and 15 ways respec-
tively, gives an indication of the degree of flexibility. Although the selection
of cell split points during the process of load balancing is conceptually at-
tractive, we chose the much simpler direct method of first dividing a cell into
pieces so that every piece has less than some maximum complexity value, and
then distributing the pieces according to the Least Processing Time (LPT)
algorithm (Korf, 1998). LPT serially places the largest remaining piece on
the processor with the least complexity. LPT is generally able to balance in
the neighborhood of 1% if the maximum piece complexity is about a third
of the average complexity per processor. The primary explanation for that
success is that our maximum piece complexity cell division algorithm usu-
ally ends up with a good number of small pieces. Roughly, the cell division
algorithm starts at the soma and examines the complexity of each subtree,
keeping subtrees connected to the soma as long as the complexity is less than
the maximum and disconnecting them if the complexity is greater. Discon-
nected subtrees are reconnected to each other if their sum is less than the
maximum. For subtrees with greater than maximum complexity, we move
one section away from the root and repeat the process.

[Figure 3 about here]

Figure 3 shows the cell division and LPT algorithm result for the CA3
pyramidal cell of the Lazarewicz model. The complexity of this 632 compart-
ment neuron on an x86 64 processor is 76789. That is, the compartments
contain many channels and the predicted computation time is that factor
longer than that of a single empty compartment. The splitting algorithm
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was limited to no piece larger than 0.1 of the total and ended up dividing the
cell into 15 subtrees connected at 7 distinct locations. The largest subtree
complexity is 7533 with the smallest subtree having a complexity of 122 and
consisting of one short section. Seven subtrees are connected at the soma.
The LPT algorithm that distributes the 15 pieces on 4 processors results in a
maximum complexity on processor 3 of 19440 for a predicted load imbalance
of 1%.

[Figure 4 about here]

Figure 4 shows the distribution of cell complexity for a neocortical column
model of the Blue Brain Project. From the histogram listing the number of
cells per estimated complexity, it can be seen that there is a tail of cells that
is much larger than the 9236 average cell complexity. In the case of whole
cell distribution the most complex cell of complexity 42385 will be the rate
limiting step for any processor count larger than 2180, i.e., when the average
load per processor is getting smaller than the load for the largest cell. With
the multisplit algorithm we chose to divide cells so that no piece is larger
than 0.8 times the average processor complexity, i.e., for 8192 processors
there are 16694 pieces and no piece is larger than 9034. The distribution of
resulting piece complexities is shown on the right hand side of Figure 4. The
LPT algorithm that distributes those pieces on 8192 processors achieves a
predicted load imbalance of 5%.

Single cell simulations

[Figure 5 about here]

Figure 5 shows that the multisplit method scales well on the test models
on shared memory machines up to 8 processors and gives worthwhile reduc-
tion in runtime on 16 processors.

Average computation time (open circles) generally follows ideal scaling
behavior though there is apparently a significant high speed cache effect for
the Purkinje model on the 4 processor Dell machine. At first sight that is
puzzling since the total complexity (the proxy used for load balancing) of the
CA1, CA3, and Purkinje models are 33786, 93410, and 25674 respectively.
(The similarity in runtimes for the CA3 and Purkinje models is an artifact
of the different tstop and dt for the models such that the number of steps
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in a run for the three models is 7500, 5600, and 20000.) The (section, com-
partment, mechanisms used) counts of the three models are (183, 331, 23),
(211, 632, 19), (1088, 1088, 19) and the average complexity per compart-
ment is 100, 150, 25. It seems reasonable to suppose that the complexity is
not necessarily related to the number of unique memory accesses per time
step. Modest evidence for this is that each of the dual-core processors on the
x86 64 Dell machine has 2MB of cache and the change in memory size when
each model is created is 3.8, 4.4, and 5.3 MB.

Associated with each open circle (computation time) is a vertical line
whose extent shows the minimum and maximum computation times for the
processors involved in the simulation. Most of these are too short to be easily
visible, demonstrating the excellent load balance, often less than 1%, from
the combination of many small pieces and the LPT algorithm. The worst
predicted imbalance is 6% for the CA3 simulation on 2 processors and that
had a computation time imbalance also of 6%.

For all 30-processor runs, the difference between computation time and
runtime is dominated by MPI Send/Recv time with reduced tree computation
time being always about 10% of the difference. The reduced-tree receive-
buffer size can be calculated from the number of pieces, p, and number of split
points, s. There are s−1 backbones, each sending 6 doubles, and p− (s−1)
leaf subtrees, each sending 2 doubles. (We ignore that the machine solving
the reduced tree matrix does not have to send its own subtree information
but merely copies the elements into the reduced tree.) Then the receive buffer
size for the reduced tree is 2p + 4s− 4 double precision values.

A small improvement in 30-processor runtimes, though not enough to
justify that number of processors, can be achieved by reducing the degree of
splitting. Figure 5 simulations were carried out with a maximum piece size
of 0.3 of the average processor complexity. The idea was to have about 3
pieces per processor and in practice what happens is, in addition, there are
quite a few much smaller pieces as well. That makes it easier for the LPT
algorithm to successfully balance. It is clear that a smaller number of pieces
will improve MPI Send/Recv time at the cost of worsened load balance. We
re-ran the 30-processor simulations with a range (0.3 to 1.0 in increments of
0.1) of maximum piece size criteria and plotted the best runtime as a dash-
mark on Figure 5. Table 1 shows the best runtime with associated statistics
along with the original results for the 0.3 maximum piece size factor.

[Table 1 about here]
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Network simulations

[Figure 6 about here]

Figure 6 shows runtime performance scaling for the 356 cell Traub model
with and without gap junctions on the EPFL IBM Blue Gene computer.
Except at 2048 processors the multisplit simulations used a 0.5 maximum
piece size factor. At 2048 processors, although load imbalance was very good
at 6% the runtime was 23.4 seconds, significantly more than the 18.7 second
runtime shown on the graph that resulted from a maximum piece size factor
of 0.8 with a load imbalance of 18%. The number of pieces with those two
factors were 6811 and 4058 pieces respectively and the extra communication
time was larger than the load balance savings (maximum computation time,
14.4 and 15.6 s respectively).

The scaling results for the 10,000 neuron neocortical column simulation
of the Blue Brain Project are shown in Figure 7. Over 1000 ms, these sim-
ulations exhibit an average per cell firing rate of 6 Hz and, with 13 million
connections between cells, generate 77 million synaptic events. For the 1024
and 2048 case the runtime for whole cell balancing and multisplit are essen-
tially identical, i.e. the complexity of the most complex cells is smaller or
equal to the average complexity of a processor. In the 4096 processor case,
the scaling for the whole cell case breaks down (filled squares) as the most
complex cell now becomes the rate limiting step. The multisplit algorithm
with LPT balancing on the other hand shows ideal scaling and with respect
to average computation time we see a significant cache effect. Though the
predicted load imbalance is 5% for the 8192 processor case the measured max-
imum and average computation time exhibits a load imbalance of 18%. While
these results are already very satisfying, further speedup may be achievable
if the reasons for the deviation of the measured computation time balance
and the expected balance from the complexity proxy can be identified.

Discussion

For the single cell models tested, the number of useful processors is related
to the complexity per compartment. The CA3 model had an average com-
plexity per compartment of 150 meaning that the computation time to setup
its matrix equation was approximately 150 times longer than that equation’s
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contribution to Gaussian elimination. With this degree of compartment com-
plexity, runtime scaling is very good up to 16 processors because each pro-
cessor is computation bound by its set of pieces even though the 110 piece
reduced tree matrix has a rank of 58. On the other hand, the Purkinje cell
model had an average compartment complexity of 25 and ideal scaling was
limited to 8 processors with a 46 piece, 27 rank reduced tree matrix and 1242
average processor complexity.

Migliore et al (2006) justified the use of a naive spike exchange method
based on an MPI Allgather every interprocessor-network-connection-minimum-
delay-interval. For the network models presented here, spike exchange over-
head is minimized through the use of several compression techniques intro-
duced by Morrison et al. (2005). That is, the 4-byte global identifier is
compressed to a single byte (allowed when there are at most 255 cells on any
processor) and the 8-byte double precision spike event time is compressed to
a single byte (allowed when there are fewer than 256 fixed size time steps
within an integration interval). Furthermore, the spike buffer size was set
large enough so that there was no occasion for a spike buffer overflow that
would require a second MPI Allgatherv. With these optimizations, which do
not affect accuracy with the fixed step integration method, spike exchange
is a small portion of the runtime; approximately 0.4 s for the 356 cell Traub
model on 2048 processors and 5 s for the 10k cell BlueBrain model on 8192
processors.

Our first implementation of the multisplit method focused on minimizing
transfers by allowing only backbones long enough to safely ignore coupling
coefficients between the backbone endpoints. Unfortunately, we observed
many 3-d reconstruction examples for which splitting into more than a few
subtrees required very short backbones whose ends were tightly coupled. Al-
lowing alternating short and long backbones preserved the analogy to the
single split transfer pattern but turned out not to be satisfactory because of
numerical instability problems when using the second order correct Crank-
Nicholson method; despite the transformation of short backbones into an N
topology matrix. Also, splitting into n subtrees at the soma required n(n−1)
transfers due to exchange between every pair of subtrees. The reduced tree
reduces this to 2n transfers. The reduced tree method also provides a good
practical compromise between splitting flexibility and fast Gaussian elimi-
nation. And that method’s double precision quantitative identity to single
process optimal tree Gaussian elimination has proved to be an extremely
useful debugging aid.
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Direct static load balancing analogous to the previous paper, which starts
by filling processors with the largest possible pieces and splitting as needed
to top off, has not been attempted and should do even better than the se-
quence of “maximum piece size splitting” followed by LPT. However, any
replacement algorithm should avoid a wide range for the piece count on the
processors since under those conditions we observed large discrepancies be-
tween predicted and actual processing times. LPT tends to keep the number
of pieces on each processor reasonably similar. Although the general balance
problem is np-complete, the non-optimal balance found by LPT is usually
good enough, especially when there are many small pieces whose complexity
is a small fraction of the average complexity per processor (cf. Hayes, 2002).
In the future, however, there are two reasons to consider combining splitting
and balancing in one algorithm for Blue Gene load balance. First, each Blue
Gene node (dual processor) is directly connected, in a 3-D torus topology, to
6 others. If the pieces of a cell are forced to be on these 7 nodes (14 proces-
sors) with the reduced tree in the center, one would expect MPI Send/Recv
overhead to be dramatically reduced. Second, the above notion implies lo-
cal balance and that allows parallelization of the decisions about splitting
and distribution, allowing scaling of this part of the problem to the next
generation of very large cluster machines.

The CA3 model (Lazarewicz et al, 2002) comes from ModelDB with the
variable time step integration method turned on. That method reduces the
runtime for a single x86 64 process from 77 to 41 seconds. Presently, the im-
plementation of the multisplit method is restricted to NEURON’s fixed step
integration method. It would clearly be beneficial to eliminate this restric-
tion and, in principle, that can be easily accomplished since the variable step
integrators (Hindmarsh and Serban, 2002) already support parallel equation
solving. Unfortunately, the problem becomes complicated in a spiking net-
work environment since, at first blush, NEURON’s local variable time step
method (Lytton and Hines, 2005) requires that the least-time element of
the event and cell queues be identical in all processes that share a part of
the same cell. This problem would be, of course, obviated in a threaded
environment.

The use of threads is an attractive alternative to MPI in a shared mem-
ory environment. With threads, NEURON program launch would be the
same as on a single processor and full GUI functionality would be immedi-
ately available. Since Gaussian elimination is normally a very small fraction
of total simulation time, multisplit is not directly needed, but will be very
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important for cache efficiency in order to avoid copying matrix equations
from the cache in which they are set up to the cache where they are solved.
There may be a savings in reduced tree communication as well since sev-
eral MPI buffer copies would be avoided. It should also be mentioned that
cache efficiency militates against using threads at the compartment level for
network simulations where small cells are coupled by spike events in which
the minimum delay interval between spike generation and spike delivery is
many time-steps. Plesser et al. (2007) show that dividing a network into cell
groups, each of which fits into cache, is very effective in avoiding cache misses
over the entire minimum delay integration interval. An example of the signif-
icance of this for cache efficiency is the dentate gyrus model of Santhakumar
et al (2005, also cf. Migliore et al, 2006) simulated on a 3GHz i686 single
processor machine with a 512KB cache. As a single process the simulation
runtime is 290 seconds but when launched with 4 or 8 MPI processes (all on
a single processor) the runtime is 253 and 247 seconds respectively.

However, it is not feasible to run large network models on “small” shared
memory machines, and, for load balance on processor clusters, the use of
multisplit is critical for performance scaling as the number of processors
becomes similar to or greater than the number of cells.
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Figure Legends

Figure 1: A: Kinetic scheme for the example neuron. B: Scheme is divided
into 8 subtrees connected at 4 distinct compartments. C: Subtrees separated
from each other each have some terms from the original shared compartment
and are connected together by 0 resistance virtual wires.

Figure 2: The sequence of steps that carry out Gaussian elimination of the
partitioned neuron in Figure 1C. A: Starting structure prior to any elimina-
tion steps. B: After phase1, single connection point subtrees are fully tri-
angularized and two connection point subtrees are triangularized up to the
backbone path. C: After phase 2, tridiagonal backbone paths are transformed
so that all backbone compartments depend only on the end compartments.
D: At the start of phase 3, a reduced tree is constructed. Here it consists of
4 coupled equations. The patterns inside each circle are meant to indicate
that the d and b matrix elements are the sums of the corresponding elements
from the connecting subtrees. At the end of phase three, the voltages are sent
back to the subtrees. E: After phase 3, all subtrees are fully triangularized.
F: After phase 4, all voltages along the backbone paths are known. In phase
5, not illustrated, the backsubstitution is completed.

Figure 3: Left panel: Lazarewicz model CA3 pyramidal cell is divided into 15
pieces with 7 distinct connection points. Middle panel: Complexity of each
of the pieces ordered from greatest to least. Right panel: LPT algorithm
chooses a processor for each piece based on the processor with the least
cumulative complexity.

Figure 4: Complexity histograms for the 10000 cell model and when the
cells are split into 16694 pieces suitable for load balanced simulation on 8192
processors. Maximum cell complexity is 42,385 and total network complexity
is 92,360,610. The largest cell was split into 8 pieces with a reduced-tree
matrix rank of 5. LPT load imbalance is 5%. Maximum piece size during
splitting was chosen using 0.8*total complexity/nhost.

Figure 5: Performance as a function of number of processors for three single
cell models. The x86 64 machine is the 4 processor Dell. The ia64 machine
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is the 32 processor SGI. For the latter, the last two points are for 24 and 30
processors. Filled circles are runtime in seconds. Open circles are average
computation time. The dashed line is the “ideal” (−1) slope performance
scaling in this log2 vs log2 plot relative to the one processor computation
time. Open circles contain a vertical line, usually too short to be visible,
that spans the minimum to maximum computation time for the processors
that took part in each simulation. The dash mark for 30-processor runs is
the best runtime as maximum piece size was varied.

Figure 6: Performance as a function of number of processors for the 356 cell
Traub model. The style is the same as that of Figure 4 except that the filled
squares are the runtime with gap junctions included. At 256 processors there
is a switch from whole cell balance to the multisplit method.

Figure 7: Performance as a function of number of processors for the 10000
cell model. Style is the same as that of Figure 4. Filled squares are for whole
cell balancing.
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Tables

Table 1: Least Runtime in seconds for the three single cell models when the
maximum piece size factor (Fac) is varied. Also shown are the results for the
standard maximum piece size factor of 0.3. Other columns are % Load Bal-
ance, Number of multisplit subtrees (Pieces), Number of split points (Rank of
the reduced-tree matrix), Reduced-tree MPI Recv buffer size (Buf) in num-
ber of double precision data values, and the Reduced-tree (RT) computation
time in seconds.

Model Runtime Fac % Bal Pieces Rank Buf RT
CA1 2.84 0.9 16 56 31 232 0.06

3.39 0.3 4 151 79 614 0.15
CA3 5.17 0.5 5 121 64 494 0.09

5.73 0.3 5 175 89 702 0.12
Purk 6.75 0.8 10 71 43 310 0.21

8.75 0.3 3 205 124 902 0.57
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