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We explore the multisend interface as a data mover
interface to optimize applications with neighborhood col-
lective communication operations. One of the limitations
of the current MPI 2.1 standard is that the vector collective
calls require counts and displacements (zero and non-
zero bytes) to be specified for all the processors in the
communicator. Further, all the collective calls in MPI 2.1
are blocking and do not permit overlap of communication
with computation. We present the record replay persistent
optimization to the multisend interface that minimizes the
processor overhead of initiating the collective. We present
four different case studies with the multisend API on Blue
Gene/P (i) 3D-FFT, (ii) 4D nearest neighbor exchange as
used in Quantum Chromodynamics, (iii) NAMD and (iv)
neural network simulator NEURON. Performance results
show 1.9x speedup with323 3D-FFTs, 1.9x speedup for
4D nearest neighbor exchange with the24 problem, 1.6x
speedup in NAMD and almost 3x speedup in NEURON
with 256K cells and 1k connections/cell.

I. Introduction

With the emergence of large massively parallel ma-
chines such as IBM Blue Gene/P [1], Cray XT4 [2] and
XT5, and large clusters with low-latency interconnects
(Infiniband [3] and Myrinet [4]), it is commonplace to
run parallel applications on thousands of processors. For
strong scaling applications, on large processor partitions,
the problem size is quite small and often very small mes-
sages are exchanged. The Message Passing Interface [5]
is a widely used programming paradigm for such mas-
sively parallel applications. The MPI 2.1 standard defines
calls for point-to-point communication, remote memory
access and collective communication. MPI has calls both
for collective communication operations over the entire
communicator and vector calls for communication to a

subset of the nodes. These collective calls are limited as
they are blocking and often optimized when a processor
communicates with all or a large subset of the processors
in the communicator. Applications must use MPI point-to-
point operations to overlap computation and communica-
tion. But, MPI point to point operations can have relatively
high overheads for short messages as incoming sends need
to be matched with posted receives.

Applications such as three dimensional Fast-Fourier
transform (FFT), NAnoscale Molecular Dynamics
(NAMD) from University of Illinois [6], [7], and
simulators for large scale neural networks such as
NEST [8], GENESIS [9], and NEURON [10] use
algorithms where processors communicate with a
neighborhood that is a subset of the processors in the
communicator. We call such communication operations
neighborhood communication operations. This size of the
neighborhood can be a constant or can even be as large
as the square-root of the number of nodes. However, it
is typically much smaller than the size of the processor
partition. NAMD and the neural network applications can
also overlap communication of many short messages with
computation. In this paper we explore optimizations for
applications with neighborhood collective communication
that can be overlapped with computation.

The Deep Computing Messaging Framework [11]
(DCMF) is an open source messaging library from IBM
for the Blue Gene/P (BG/P) machine. It is flexible and
extensible to architectures other than BG/P and supports
programming paradigms such as UPC [12], ARMCI [13]
and Charm++ [14] in addition to MPI. We present the
DCMF multisend interface that enables applications to
send multiple messages in a single call. Data multicast,
scatter and reduction are examples of multisends. These
calls can also exploit special hardware features such as
a global collective acceleration network on Blue Gene/P.
Multisends are general and can benefit other architectures



where sending several messages in a single call is more
efficient than repeated send calls.

MPI collectives on Blue Gene/P are built on top of
DCMF Multisend. The DCMF library is a flexible environ-
ment for exploring new algorithms for non-blocking and
neighborhood collective collective communication opera-
tions. DCMF multisends can be used as a testing ground
for proposals for new calls in MPI 3.0. In fact, multisends
in DCMF have been discussed and have motivated MPI
3.0 proposals in the MPI Forum.

We present the novel record replay optimization to
DCMF multisend, where a repeating application commu-
nication pattern can be built once and stored as a list of
descriptors in a memory buffer. Successive communication
calls have very low overheads since they only change head
and tail pointers in the DMA unit to point to this memory
buffer instead of building and injecting all the descriptors
again and again for each communication phase.

We also present case studies with FFT, Lattice QCD,
NAMD and NEURON to directly call the multisend in-
terface to optimize neighborhood collectives that can be
overlapped with computation.

The following are the contributions of the paper:

• Motivations, concepts and performance analysis of the
DCMF multisend interface

• The record replay optimization for applications with
persistent communication patterns

• Case studies showing that four scientifically impor-
tant applications can benefit from the multisend and
persistent optimizations

A. Related Work

Non-blocking extensions to the collective calls in the
MPI 2.1 standard have been presented in the NBC li-
brary [15], that provides an implementation of nonblocking
collectives on top of MPI point-to-point communication.
The authors are aware that non-blocking collectives are
now a part of MPI 3.0, but, product implementations of
MPI 3.0 may not be available for quite some time. An
MPI 3.0 proposal for neighborhood collectives has been
presented in [16]. Many-to-many in the context of the UPC
programming paradigm is presented in [12]. The DCMF
active message library for Blue Gene/P has been presented
in [11] and the Component Collective Messaging Inter-
face (CCMI) for optimized MPI collective communication
operations is presented in [17]. CCMI algorithms and
MPI collectives are built on top of the DCMF multisend
interface. But, the motivations, concepts and performance
analysis of the DCMF multisend interface have not been
published before.

In this paper, we explore multisends and present case
studies to optimize neighborhood collectives with mul-

tisends. Since the multisend interface is based on ac-
tive messages, it is more general than the current MPI
3.0 proposal [16]. Multisends can optimize programming
paradigms such as Charm++ in addition to MPI. We
present the record replay optimization for persistent com-
munication operations.

II. Multisend architecture

The DCMF multisend API is an active message inter-
face. In an active message, the header packet carries the
identifier of the dispatch handler function to be executed
on arrival of the header packet. The dispatch handler
typically returns a buffer to receive the message payload.
The handlers are invoked by the DCMF runtime during a
call to the progress engine via DCMFMessageradvance
or in a background communication thread. Multisends are
hence one-sided, as the sender initiates the collective and
the remote nodes get notified via callbacks.

Multisends take advantage of the fact that massively
parallel architectures today have a network interface that
offloads communication work from the main processor.
For example, the BG/P architecture adds a Direct Memory
Access (DMA) engine to facilitate injecting packets to
the network and receiving packets from the torus network
over its predecessor BG/L. To initiate data movement the
processor core injects a descriptor (similar to descriptors
in Infiniband) into an injection FIFO (first-in first-out
buffer). While the first send incurs the full startup
overhead of the software stack and building the full
descriptor, successively altering the descriptor to change a
few parameters can be done very efficiently. The multisend
calls take the list of destination ranks as arguments and
do not require pre-created communicators. The DCMF
multisend API has two flavors of non-blocking calls
shown below.

A. DCMF Multicast

In a DCMF Multicast operation (Figure 1) a processor
multicasts a buffer (srcbuf) to several destinations. This
call injects a DMA descriptor for each destination and
then immediately returns. Request objects are passed to
the DCMF API to enable the DCMF runtime to store
internal message state. The cbdone callback is called
by the progress engine when the multicast buffer has
been sent to all the destinations. The DCMFMulticast
interface has active message semantics. On the destination
processors (specified in ranklist) when the first packet
of the multicast is received a dispatch handler function
with signature cbdispatchMulticast and identified bydis-
patchid is invoked. This dispatch function allocates a buffer



DCMF Multicast ( cb dispatchMulticast(
dispatchid, /* Recv dispatch handler id */ recvRequest, /*Buffer for recv msg. state*/
request, /*Buffer to store msg. state*/ srcrank, /* rank of the sender */
cb done, /* Callback that is invoked bytes, /* Size of the multicast*/

when multicast completes */ .......
conn id, /* Connection identifier tag*/ conn id, /*Connection Identifier tag */
persistid, /* Identify the persistent .......

communication pattern */ .......
srcbuf, /* source buffer */ rcvbuf, /* Buffer for multicast payload*/
size , /* size of the message*/ rcvsize, /* Size of the message */

ranklist, /* Array of dst. ranks*/ recv done, /*Recv completion callback called
nranks, /* number of destinations */ when all bytes have arrived */

..... /* Other parameters */ ...... /* Other Parameters */
); );

Figure 1. The DCMF Multicast API and the receive dispatch callback

to receive the multicast message payload. While the send
to the first processor incurs the full startup overhead, for
successive sends only the destination in the descriptor
needs to be changed and then re-injected into the injection
FIFO. DCMF Multicast can also enable broadcasts on
Blue Gene/P collective network and line broadcasts on the
torus network.

As the DCMF multisend interface supports several
overlapping collectives, there can be several multisend
messages being sent and received at the same time on
each node. The different multisend messages are identi-
fied by connection identifiers (connid in the API pre-
sented above). The node that initiates the DCMFMulticast
chooses a connection id based on the global properties of
the collective operation. Connection identifiers extends the
tag in MPI point-to-point communication to collectives.

MPI Broadcast on BG/P is implemented on top of
DCMF Multicast, via a spanning tree algorithm [17].
At each level in the spanning tree, processors call
DCMF Multicast to send data to the next level of the
spanning tree.

A one sided broadcast, where the broadcast initiated
by the root node is received in the background on
the destination processors, can be easily implemented
on top of DCMF Multicast. Here the root will call
DCMF Multicast with the ranklist having all the
destination processors. The broadcast payload is received
in dispatch callbacks on the destination processors.

B. DCMF Manytomany

The DCMF Manytomany call (Figure 2) enables effi-
cient scatter, gather, and all-to-all operations. Here, one
or more processors send data from base address sr-
cbuf, sizes given by sizevec and from displacements
given by displ vec to the processors in the ranklist.
The DCMF Manytomany call also has active message

based semantics. A dispatch handler with signature
cb dispatchManytomany and identified by dispatchid is
invoked on the destination processors. This handler returns
the receive buffer, sizes vector and displacement vector
for the data from many different senders. The remote
index parameter (rIndex) is the index in the receiver
displacement and size vectors for a given sender. The
MPI Alltoallv collective operation on BG/P is imple-
mented on top of DCMFManytomany by settingrIndex
to the relative rank of the sender in the communica-
tor. The DCMF Manytomany call is more general than
MPI Alltoallv as it can efficiently implement sparse col-
lective operations where each processor sends data to a
small subset of processors in the communicator. In an
MPI Alltoallv, the sizes and displacement vectors have
one entry for each processor in the communicator, which
may result in branching and cache performance overheads
to process long vectors with many zero elements. In
the extreme case on a next-generation petaflop million
processor machine, even initiating an MPIAlltoallv will
require 16MB of memory allocation for count and dis-
placement vectors, which is significant. However, in the
DCMF Manytomany the application only needs to pass
displacement and size vectors for the destination ranks that
have non-zero message sizes. The new rIndex parameter
will be used to look up the the receiver’s compressed sizes
and displacement vectors to find the address where the
sender’s buffer is copied. Similar to DCMFMulticast, the
DCMF Manytomany call also takes connection identifiers
as an input parameter.

C. Record Replay

In this section we present the novel record-replay opti-
mization on Blue Gene/P, where a persistent communi-
cation pattern is recorded in a multisend call and then
replayed via a single call. On BG/P, with normal point-
to-point messages a descriptor must be constructed and



DCMF Manytomany ( cb dispatchManytomany (
dispatchid, /* Recv dispatch handler id */ ....
request, /* Buffer to store msg. state*/ recvRequest, /*Buffer for msg state*/
cb done, /* Callback that is invoked rcvbuf, /*Base address of recv buffer*/

when many-to-many completes*/ rcvlens, /* Vector of recv lengths */
conn id, /* Connection Identifier tag */ conn id, /*Connection Identifier tag*/
persistid, /*Id of persistent comm. pattern*/ rcvdispls, /* Vector of displacements*/
rIndex, /* location on the receiver where ....

this sender’s message is placed*/ nranks, /*Num ranks to recv from */
srcbuf, /* Base address of source buffer */ ......

size vec, /* Vector of bytes to each dst.*/ recv done, /*Callback to be called when
displ vec, /* Displacements to each dst. */ all data has arrived */
ranklist, /* List of destination ranks */ ....
nranks, /* Number of ranks */ ....

.... /* Other parameters */ ....
); );

Figure 2. The DCMF Manytomany API and the receive dispatch callback

Figure 3. Record Replay on Blue Gene/P

copied into the DMA injection FIFO for each destination.
In addition the DMA tail pointer in the DMA SRAM
must be incremented to notify the DMA of the message
send operation. The construction of descriptors and the
increment of the tail pointer contribute to software startup
overhead for each message. In DCMFMulticast and
DCMF Manytomany calls, the descriptor is constructed
only for the first destination and altered for each other
destination resulting in better performance.

The record-replay optimization further optimizes soft-
ware overhead as the replay requires only the head and tail
pointers to be set in the DMA injection FIFO. The record-
replay multisend implementation allocates a cumulative
buffer to store injection descriptors for an application
specified number of communication patterns. We added
a new parameterpersistid to the DCMF Multisend inter-
face to allow the application to identify each persistent
communication pattern. A single DMA injection FIFO is
dedicated for persistent communication. Record-replay on

the BG/P DMA is illustrated in Figure 3. During the record
phase the head and tail pointers of the DMA point to the
region of the cumulative buffer determined by the persistid.
For each destination a descriptor is constructed and copied
into the injection FIFO. During the replay, the head and tail
pointers in the DMA FIFO are set to point to this region of
pre-built descriptors. So, the replay can be done with very
low overheads independent of the number of destinations
in the multisend operation.

Since persistent messages are injected from different
DMA injection FIFO than point-to-point messages, order-
ing with point-to-point messages cannot be guaranteed.
Hence it is non-trivial to enable MPI persistent messages to
take advantage of this optimization. However, applications
that directly call the DCMF Multisend API can benefit
from this record-replay optimization.

III. Benchmark and Application overview

We present the benefits of the multisend interface in
the 3D-FFT and the 4D nearest neighbor benchmarks and
two application case studies.

A. 3D Fast Fourier Transform

Fast Fourier Transform (FFT) is an efficient algorithm
to compute the discrete Fourier transform and its inverse.
In a three dimensional Fast Fourier Transform (3D-FFT)
operation, FFT operations must be performed along the
X,Y and Z dimensions. The 3D-FFT operation is used in
many scientific applications, such as in molecular dynam-
ics Particle Mesh Ewald computation, quantum chemistry
and distributed navier stokes.

The 3D-FFT is parallelized via a 2D pencil decompo-
sition as the 1D decomposition has limited scalability. In



the 2D decomposition, each processor has a subset of the
3D input complex numbers called a pencil. Each pencil
has a subset of the data along two dimensions and all
input points in the 3rd dimension. The 3D-FFT operation
has three phases along X,Y and Z dimensions. In each
phase of a 3D-FFT operation of size(N × N × N) on
P processors, each processor hasN3/P data-points and
exchanges messages with

√
P other processors where the

size of each message is(N/
√

P )3 elements. With the
2D pencil decomposition processors exchange data with
row and column neighbors. During the forward FFT, each
processor exchanges data first with its row neighbors in
the X phase, and then column neighbors in the Y phase.
With backward FFT, each processor exchanges data with
its column neighbors during the Z phase and row neighbors
during the Y phase.

At the limits of scalability, when number of proces-
sors P isO(N2), this 3D-FFT algorithm is communi-
cation bound. We explore four different 3D-FFT algo-
rithms, i) MPI Alltoallv on MPI COMM WORLD, ii)
MPI Alltoall on row and column sub-communicators, iii)
DCMF Manytomany, and iv) DCMFManytomany with
record replay. We specifically chose the MPIAlltoallv
on MPI COMM WORLD algorithm to demonstrate scal-
ing limitations in the MPI 2 standards, where vector
collective calls must specify counts and displacements
for all processors in the communicator. This scenario is
critical to Lattice QCD, NAMD and NEURON, where
the communication pattern cannot be mapped to collective
calls on sub-communicators. In this paper, we show that
the DCMF multisend calls have much better performance
with subset neighborhood communication that cannot be
mapped to collectives to sub-communicators.

B. 4D Near Neighbor Exchange

Quantum Chromo Dynamics (QCD) is the theory of
strong nuclear force that binds the constituents of sub-
nuclear matter, quarks and gluons into stable nuclei. Lattice
QCD (LQCD) formulates this theory on a 4-dimensional
space-time lattice. The simulations are typically dominated
by a sparse linear matrix times vector solver, where the
conjugate gradient (CG) method is used to solve a sparse
linear Dirac operator. For this study, we have set up a
simple micro-benchmark to emulate LQCD computation
and communication characteristics for the standard Wilson
fermion formulation.

Wilson fermion LQCD is simulated in 4 dimensions.
An optimized code usually sustains about 20% to 30%
of peak floating point performance [18]. We assume that
the sustained performance is 25% of peak performance to
calculate the cycle count for the computation in the bench-
mark. Assuming that the local 4D volume per processor

is N4, the total computation per CG iteration is about
1300 floating point operations per site on the Blue Gene/P
PowerPC 450 core. The compute phases are split into two
phases due to an even-odd preconditioning. Associated
with each compute phase, half of the lattice sites on 8
surfaces of the local 4D volume need to transfer data to
their corresponding nearest neighbors in the 4D topology.
There are a total of 8 transfers (only 6 remote transfers are
modeled in the benchmark) ofN

3

2 ∗ 12 double-precision
numbers per computing phase, where most of the can
be overlapped with computation. In addition to the two
computing phases, there are also two global sums required
by the CG algorithm.

The different compute and communication phases of
LQCD benchmark are shown in Figure III-B. This bench-
mark actually models only a 3D exchange; the exchange
in the4th dimension is assumed to be intra-node in which
the cores simply access each others computed results in
a shared memory region. We also explored the above 4D
near neighbor benchmark with the DCMFManytomany
API that is a single call to which lists of source and
destination processors, buffer counts and offsets, and a
list of offsets to the destination buffers are passed in
as parameters. A performance comparison with MPI is
presented in Section IV.

C. NAnoscale Molecular Dynamics

NAMD (NAnoscale Molecular Dynamics) is a produc-
tion molecular dynamics (MD) application for biomolec-
ular simulations that include assemblages of proteins,
cell membranes, and water molecules. In a biomolecular
simulation, the problem size is fixed, and a large number
of iterations need to be executed in order to understand
interesting biological phenomenon. Hence, we need MD
applications to scale to thousands of processors, even
though the individual time step on one processor is quite
small.

NAMD uses a hybrid strategy that combines spatial
decomposition with force decomposition, and couples it
with the dynamic load balancing framework of Charm++.
The dominant computation in molecular dynamics is that
of computing non-bonded forces i.e. electrostatic and Van
der Waals forces between all pairs of atoms. The potential
O(N2) all-pairs algorithm is optimized to O(N log(N))
complexity by using the notions of a cutoff radiusrc, and
separation of computation of short-range and long range
forces. For each atom, the non-bonded forces due to atoms
within rc are calculated explicitly. The long-range forces
due to the atoms outside this radius are calculated using
the Particle Mesh Ewald (PME) algorithm [19]. The PME
algorithm has a forward and inverse 3D-FFT operation
resulting in an O(N log(N)) complexity. Even with this



LQCD loop over iterations: //Lattice QCD computation loop

Post receives0 //Post receives for phase 0
Isend 0 //Send 6 torus near neighbor messages for phase 0

Compute0 //Phase 0 compute(1300∗N
4)

2 cycles
Wait 0 //Phase 0 wait

Post receives1 //Post receives for phase 1
Isend 1 //Send 6 torus near-neighbor messages for phase 1

Compute1 //Phase 1 compute(1300∗N
4)

2 cycles
Wait 1 //Phase 1 wait

Allreduce 0 //Phase 0 CG global sum
Allreduce 1 //Phase 1 CG global sum

Figure 4. Lattice QCD benchmark computation and communication phases

Figure 5. Phases of the NAMD computa-
tion [6]

splitting, most of the computation cost is due to explicit
calculation of non-bonded forces within the cut-off radius.

Charm++ [14] is an object-oriented message driven
parallel programming language. The NAMD application is
built using Charm++ and gains performance and scalabil-
ity by overlapping several different computation phases.
The application represents computation in terms of C++
objects. The Charm++ scheduler executes different object
methods when messages arrive on the network.

Figure 5 illustrates the NAMD computation, which be-
gins with the patches (Charm++ objects that store the atom
state) multicasting the atom coordinates to the compute
objects. The compute objects do the force calculation
and then the forces are reduced back to the patches,
where the forces are integrated and velocities, energies
and new positions are computed. The patches also initiate
PME computation to the PME objects and that is fully
overlapped with the cutoff real-space computation. PME
in NAMD has six computation and communication phases.

First the atom coordinates are used to construct the charge
grid, that is then scattered to the Z dimension PME-Z
compute objects. The PME-Z compute objects perform
a 1D forward FFT along the Z dimension, compute a
transpose and then send messages to the Y-dimension
PME computes. The PME-Y compute objects perform an
FFT along the Y dimension and then sends messages to
PME-X compute objects that perform a 1D FFT along the
X dimension. The result of the 3D-FFT is used for the
Ewald calculation followed by an inverse 3D-FFT with
X,Y and Z phases to compute the long range forces. The
PME Z computes send the forces back to the patches for
integration.

While the FFT communication can be implemented
as a blocking MPIAlltoall on row and column sub-
communicators, the remaining communication phases co-
ordinate multicast, force reduction and patch to PME
communication are neighborhood collectives that cannot
be mapped to sub-communicators. Hence, the production
NAMD software only uses non-blocking point-to-point
messages for these neighborhood communication patterns
and computation and communication is overlapped.

We extended the NAMD software to enable both
the real-space communication and the PME communi-
cation to take advantage of the DCMF multisend API
calls. The atom-coordinate multicast was enhanced to use
DCMF Multicast, while the PME communication was
built upon the DCMFManytomany call. As both the
DCMF Multicast and the DCMFManytomany calls are
non-blocking, all the different phases of the application
can overlap with each other. The PME computation in
NAMD is optimized via six different overlapping calls to
DCMF Manytomany on six different connections. We de-
fined a new CmiDirectManytomany interface in Charm++
(based on the CkDirect [20] direct data placement API in
Charm++) to take advantage of the DCMFManytomany



call. We also developed a new PME kernel in NAMD that
builds on the CmiDirectManytomany interface.

We use the standard 92K atom APoA1 benchmark
which to demonstrate the benefit of multisends on Blue
Gene/P. Computational biologists typically use molecular
systems with tens of thousands of atoms similar to the
ApoA1 benchmark. Past work on NAMD [6] has shown
scalable performance with multiple time-stepping, where
the PME computation is executed every two or four
time steps. However, with the DCMF multisend calls, the
NAMD application scales to 16K processors even when
PME is computed every time step (Section IV).

D. Neural Networks

From the viewpoint of communication, large scale spik-
ing neural networks consist of computational units called
cells connected by one-way delay lines to many other
cells. Cells generate logical events, called spikes, at various
moments in time, to be delivered to many other cells with
some constant propagation delay which can be different
for different connections. Cells generally send their spikes
to thousands of cells and receive spikes from thousands
of cells. Each cell has a unique, often random, set of
connections to other cells.
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Figure 6. The multisend method of spike ex-
change via DCMF Multicast

When the number of connections per cell is a significant
fraction of the number of processors, most processors need
most spikes. Furthermore, the interval between spikes gen-
erated by given cell is much larger than the minimum cell-
to-cell connection delay. So storing generated spikes in a
buffer during an integration interval equal to the minimum
cell-to-cell connection delay and exchanging spikes at the
end of each integration interval using MPIAllgather is
usually better than using point to point exchange methods.
However, when the number of processors is much greater

than the number of connections per cell, four considera-
tions suggest that the MPIAllgather method will exhibit
poor scaling for very large neural network simulations
which, nevertheless, have sparse cell to target processor
connectivity. First, MPIAllgather itself requires twice the
time when the number of processors doubles. At the limits
of scalability, spike exchange must send at least a spike
count and two bytes per spike to each destination, and
so the allgather buffer does not become smaller when
the number of processors doubles. Second, all incoming
processor buffers must be examined for spikes, even if the
spike count for a given source processor is 0. Third, every
incoming spike requires a search in a table for whether
or not the spike is needed by at least one cell on the
processor. Fourth, it is not possible to overlap computation
and communication. None of these issues apply with the
multisend method.

Figure 6 illustrates the multisend method data flow
from when a spike is generated on the source processor
to when that spike is enqueued on one of the destina-
tion processors. The minimum delay integration interval
(during which spikes are generated by cells but are not
needed on other processors until a subsequent interval) is
divided into two equal subintervals, call them A and B.
Then a spike generated in subinterval A immediately ini-
tiates a DCMFMulticast that proceeds in the background
and overlaps with computation through the completion of
subinterval B. At the end of subinterval B, a loop over
MPI Allreduce is entered until the number of spikes sent
and received from the previous subinterval A is equal. The
DCMF Multicast has enough space (16 bytes) in its header
packet to contain the integer source cell identifier, the
current A or B subinterval, and double precision spike-time
so no packet assembly is needed on the target machine.

IV. Performance Study

We performed an experiment to measure the perfor-
mance of Scatterv, where the root sends 16 bytes to a
subset of the nodes and zero bytes to the remaining nodes
in the communicator. Figure 7(a) illustrates performance
results when the subset of nodes that receive non-zero
bytes from the root is increased from 1 to 2048. Note when
the size of this subset is small, the DCMFManytomany
techniques perform significantly better than MPI. Even
when all nodes receive 16 bytes from the root, the per-
sistent optimization is 2.7x faster than MPI. We have
measured the overhead of DCMFManytomany to be
1.8us for the first send and 0.24us for each additional
destination. With persistent manytomany, the first send has
an overhead of 2.3us and there is no additional software
overhead for sends to more destinations. The performance
of persistent manytomany is mainly driven by the torus
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Figure 7. Collective operations to a subset of nodes with 16 byte per destination on 2048 nodes

network throughput. We designed a similar experiment
to measure the performance of MPIAllgatherv. Here a
subset of nodes have send counts of 16 bytes, while, the
remaining nodes send zero bytes. Figure 7(b) shows the
performance of MPI and DCMF multisend techniques as
the subset of nodes that send 16 bytes is increased from 1
to 2048. Observe that the persistent optimization has the
best performance here.

3D-FFT: We measured the performance of the 3D-
FFT operation using MPIAlltoallv and the DCMF many-
tomany calls. The benchmark reported half the time to
do the pair of forward and inverse FFTs. Figures 8(a)
and 8(b) present the performance results for the323 and
643 problem sizes on different processor partition sizes.
MPI Alltoallv on MPI COMM WORLD does not scale
as several entries in the count and offset lists are zero. We
found that MPI Alltollv has an overhead of about 60ns for
each zero element in the send and receive count vectors re-
sulting in limited scalability. The algorithms MPIAlltoall
on a sub-communicator, DCMFManytomany and record
replay scale with the number of nodes. Since MPIAlltoall
uses adaptive routing, packets can arrive out of order.
Hence the MPIAlltoall implementation internally calls
barrier before the alltoall payload messages are exchanged.
Since the 2D decomposition algorithm for 3D-FFT syn-
chronizes all processors after each FFT, we eliminated
the barrier in our DCMFManytomany implementation. In
addition the DCMF multisend calls are at a lower level
than MPI resulting in lower overheads. Hence, the DCMF
algorithms outperform MPI. The best performance for the
323 and 643 FFTs are32, 64 microseconds respectively
and is achieved with the record replay many-to-many
algorithm. This performance corresponds to speedups of
1.9x and 1.8x over the best MPI sub-communicator per-
formance, and speedups of 1.3x and 1.4x over the standard

DCMF Manytomany version.

4D Near Neighbor Exchange: Table I shows perfor-
mance of the 4D nearest neighbor QCD emulation bench-
mark on 512 nodes of Blue Gene/P. As the communication
pattern is near-neighbor and the MPIAllreduce time on
the collective network only changes slightly with node
count, these results are representative of performance on
large BG/P machines. The table presents time for the total
iteration (run), the iteration computation (comp) and link
transmission time at peak throughput (wire). We found
MPI has best performance in eager-mode and only those
results are presented in the table. Observe that when
N = 2, the benchmark is communication bound and the
DCMF Manytomany results in a speedup of 1.9x over
MPI, as messages do not incur overheads of building 6
descriptors and matching six incoming messages to the
posted receives. Notice that the network transmission time
is much lower than the computation time in all cases and
should be fully overlapped with computation.

NAMD: Figure 9 shows a performance comparison
between the standard NAMD/Charm++ version built on
top of the DCMF point-to-point API and an optimized
version with calls to the DCMF multisend API. We did
not consider the MPI version of Charm++ as past work [6]
has shown that the native Blue Gene version performs
better than Charm++ built using MPI calls. The APoA1
benchmark is simulated here. It has a 108x108x80 charge
grid that has to be FFTed for the PME calculation. As men-
tioned in Section III, transferring charges from Patch ob-
jects to the PME objects and the PME force reduction back
to the patches are both neighborhood communication pat-
terns that cannot be mapped to sub-communicators. PME
in the production NAMD software is implemented via
point-to-point messages to enable overlap of computation
and communication. However, the production NAMD soft-



(a) 32× 32× 32 (b) 64× 64× 64

Figure 8. Step time for 3D-FFT operations on BG/P

Problem Size(N) MPI Eager Many-to-many
N4 sites/proc. run comp wire run comp wire

8 6594 6264 526 6583 6264 526
4 511 392 66 460 392 66
2 104 24.5 8.2 55.7 24.5 8.2

Table I. 4D Near neighbor benchmark performance (µs) on 512 nodes in Quad mode

Figure 9. NAMD: APoA1 Benchmark timestep
time (ms) with PME every step in Quad mode

ware does not scale beyond 4096 processors when PME
is executed every time step, while DCMFManytomany
enhancement to PME scales to 16384 processors with a
timestep of 1.84ms, a speedup of 1.6x over the point-to-
point implementation.

NEURON performance results: To focus on the strong
scaling behavior of communication time limited models,
we used networks with N = 256K cells designed to min-
imize computation time. Each cell is randomly connected
to approximately M = 1k or 10k other cells with a 1
ms connection delay and each cell intrinsically fires with

a uniform random interval between 10 and 20 ms. The
precise number of input connections to each cell was drawn
from a discrete uniform random distribution from M-2 to
M+3. Computation time of the cell is proportional to the
sum of number of input spikes to the cell and number of
generated spikes and consists, for each input and generated
spike, mostly of evaluation of an exponential function
to determine the value of its single state variable and
evaluation of a logarithm function to update the time the
next output spike is generated. Since each cell is associated
with a distinct statistically independent but reproducible
random generator, the specific random network topology
and specific random firing of each cell is independent
of number of processors or distribution of cells among
the processors. Simulation runs are for 200 ms. I.e. 200
integration intervals for the MPIAllgather spike exchange
method and 400 A-B integration subintervals for the multi-
send method. The particular random instance of the 256K
cell, 1k connections/cell model is such that 3,369,556
spikes are generated by the network. Moreover, on 8K
processors the 32 cells on processor 0 each send spikes
from 884 to 1003 other processors.

Table II summarizes these performance results for 8K,
16K, and 32K processors. For each of the three methods,
the run time and the computation time are shown. The
rows with 10k connections/cell increase the number of
connections per cell by a factor of 10. With the number
of connections per cell, computation scales linearly, ie



Cores Cells Conn. MPI Allgather DCMF Multicast Record Replay
run comp run comp run comp

8192 256K 1k 2.09 0.695 2.06 0.785 1.89 0.684
16384 256K 1k 1.76 0.353 1.25 0.397 0.979 0.347
32768 256K 1k 2.17 0.191 0.834 0.217 0.633 0.187

8192 256K 10k 11.1 6.14 14.9 6.64 14.3 6.04
16384 256K 10k 6.87 3.19 10 3.56 8.88 3.19
32768 256K 10k 4.83 1.61 6.75 1.82 5.87 1.59

Table II. Performance of NEURON (seconds) on BG/P in Quad mode

with 10k connections/cell the computation increases 10
fold over 1k connections/cell. Communication time for
the MPI Allgather method is unchanged as the number of
connections is increased, while communication time for
DCMF Multicast increases linearly with the number of
connections/cell. Moreover, the computation time halves as
number of processors doubles and is reasonably consistent
across methods.

With 1k connections per cell, the DCMFmulticast
and record-replay algorithms out-perform MPIAllgather
for 16K and 32K processors. The record-replay multi-
cast optimization is better than standard DCMFMulticast,
by 1.3x with 1k connections on 32768 processors.
However, with 10k connections per cell, the allgather
method has the best performance. This is because
MPI Allgather on MPI COMM WORLD takes advantage
of the collective network, that results in higher through-
put than the DCMFMulticast algorithms on the torus
network. On larger processor partition sizes, we expect
DCMF Multicast algorithms to have better performance
than MPI Allgather even with 10k connections.

A. Discussion

The performance results from our case studies show
that DCMF Multicast and DCMFManytomany multisend
APIs have significantly better performance than both point-
to-point messages (LQCD and NAMD) and MPI collective
operations (NEURON), for neighborhood collective com-
munication operations that cannot be mapped to collectives
on sub-communicators. Even in the case of the 3D-FFT,
where the communication pattern can be implemented as
MPI collective calls on sub-communicators, the DCMF
Multisend calls outperform MPI as they have flexible se-
mantics and can avoid a barrier. In addition, the multisend
calls are non-blocking and can be overlapped with the
application computation. As the record replay optimization
eliminates startup overheads, it further improves applica-
tion performance over DCMF multisend. Its performance
gains are demonstrated in 3D-FFT and Neuron.

We expect several other applications with neighborhood
collective operations to take advantage of the multisend
calls. The concepts behind the multisend interface are
general and can be extended to other architectures with
DMA units that benefit from lower overheads to inject
many descriptors in one call over repeated send operations.

V. Conclusions

We presented the multisend interface as a powerful
low-level interface for applications with neighborhood
collectives that can be overlapped with computation. We
presented some limitations in the current MPI standard
and hope the approach and performance results in this
paper can strengthen the need for optimized neighborhood
collective operations in MPI 3.0. As the multisend calls
have active message semantics, are they are not limited to
just MPI and programing paradigms such as Charm++ and
UPC can take advantage of them as well. We optimized the
performance of the 3D-FFT benchmark, 4D near neighbor
exchange, molecular dynamics application NAMD and the
neural network simulator NEURON by inserting direct
calls to the DCMF Multisend API with impressive per-
formance gains. We also presented a persistent record
replay multisend optimization that can make the processor
overhead of the communication operations very small
and showed benefits in the neural network and 3D-FFT
applications. Our current implementation of record replay
only uses one injection FIFO. We plan to explore multiple
DMA injection FIFOs to further improve its performance.
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