
Hines et al. NEURON in NeuroInformatics

Model Structure Analysis in NEURON

M.L. Hines1, Ph.D., T.M. Morse2, Ph.D., and N.T. Carnevale3, M.D., Ph.D.

Departments of 1Computer Science and 2Neurobiology,

Yale University, New Haven, CT

Chapter 6, p. 91-102 in Neuroinformatics, edited by Crasto, C.J.. Totowa, NJ: Humana
Press, 2007.

Corresponding author:
N.T. Carnevale
Neurobiology Department
Yale University School of Medicine
P.O. Box 208001
New Haven, CT 06520-8001
Phone 203-737-4232
email ted.carnevale@yale.edu

1. Introduction

Sometimes working on a solution for one problem seems to create a new problem, or at

least reveals a problem that was waiting to be uncovered. Such was the case with the

availability of computational models in neuroscience. For many years, a common lament

among computational neuroscientists was the difficulty of obtaining the source code used

in published models. This constituted a serious barrier to a key element of scientific

method: reproducibility.

We and our collaborators have been addressing this problem by developing ModelDB,

a WWW-accessible resource designed to serve as a mechanism for attributed reuse of

published models (1, 2). While it is still very much a neuroinformatics research project,

ModelDB is already seeing heavy use by modelers from labs around the world. In the short

time since its inception, it has grown to more than 180 entries, most of which are

executable.

However, the presence of a large number of runnable, published models in ModelDB

brought to light a problem that seems obvious in retrospect: even when source code is

Page 1



Hines et al. NEURON in NeuroInformatics

available, it can be hard to determine exactly what biological properties are represented in

a model. Source code is generally hard to read and understand, because model developers

tend to have their own individual programming styles, and generally do not place a high

priority on presentation when writing code. Furthermore, programs are often organized in

such a way that parameters are assigned values at run time that differ from what was

specified at the top of the code.

Since most of the entries in ModelDB were written for the NEURON simulation

environment (3, 4), we decided to make it easier to deal with the problem of

understandability by adding a tool to NEURON that analyzes a model and presents a

concise, yet complete, graphical and textual summary of its anatomical and biophysical

properties. This tool, which is called ModelView, is part of NEURON's graphical user

interface, and in this paper we describe its main features and present an example of its use

by analyzing one of the entries in ModelDB.

2. Materials

1. The NEURON simulation environment, which runs under OS X, UNIX/Linux, and

MSWindows (3). Installers, source code, and documentation are available from

http://www.neuron.yale.edu/ (4). 

2. ModelDB (1), whose home page is http://senselab.med.yale.edu/senselab/modeldb/ (2). 

3. To illustrate the features of the ModelView tool, we selected a very complex

hippocampal Ca1 pyramidal cell model that was developed by Poirazi et al. for a study of

synaptic integration (5). We retrieved this model following instructions provided at

ModelDB's WWW site. For simplicity, we used ModelDB's "Auto-launch" feature, which

downloads the model code and then makes NEURON automatically compile the

biophysical mechanisms and execute the model code. This brought up a graphical window

Page 2



Hines et al. NEURON in NeuroInformatics

that contained three buttons, including one that was labeled "hyperpolarization-current,"

which we clicked on to start a simulation that showed how the model is affected by an

injected hyperpolarizing current. After the end of this simulation, we clicked on the Init

button in NEURON's RunControl panel to restore the model to its initial condition. At this

point, the model cell was ready for analysis.

3. Methods

ModelView in NEURON

Clicking on NEURON Main Menu / Tools / Model View (Fig. 1) brings up a

ModelView tool (Fig. 2), which initially shows a top-level summary of the model. In

NEURON, a cell is represented by one or more sections, each of which consists of one or

more computational nodes called segments (3). The first item in the summary ("183

sections; 331 segments") shows the total number of sections and segments for all the cells

in the model. The second and final items in the summary are the numbers of real and

artificial cells, and density mechanisms and point processes; the latter two include ion

channels, synaptic receptors, and electrodes (3). The Poirazi model contains one real cell,

several density mechanisms, and one point process.

The main window of the ModelView tool presents a tree-structured, hierarchical

textual outline of the properties of a model that can be explored by clicking on any line of

text. Clicking on a line that starts with an asterisk will expand or contract the next level of

the tree. Clicking on "* 1 real cells", and then on the newly appeared "* root soma[0]",

brings up a "shape plot" that shows the cell's anatomical configuration, and expands the

outline to display a list that reports how many duplicate and unique parameters that are

distributed throughout the cell (Fig. 3). The first three lines of this list are the total number

Page 3



Hines et al. NEURON in NeuroInformatics

of sections and segments in this particular cell, the related nseg (spatial discretization)

parameter distribution, and the number of inserted mechanisms.

Expanding "* 23 inserted mechanisms" reveals which ion channels are used in the

model (Fig. 4). Clicking on "* cat" expands ModelView's outline, disclosing that the cat

mechanism's conductance density gcatbar_cat varies over the cell. It also makes the shape

plot redraw the cell so that only sections with the cat mechanism are red (Fig. 5). To see

exactly how gcatbar_cat varies with location, we just click on "* 36 gcatbar_cat" to expand

the outline; this also brings up a "range graph" window with a top panel that uses a color

scale to indicate the spatial variation of gcatbar_cat, and a bottom panel that plots

gcatbar_cat as a function of path distance in microns from the soma (Fig. 6).

ModelView analyzes the model to find subsets of sections that share a parameter (or a

set of parameters) that have the same value(s). In this example, there are 53 subsets with

constant parameters (Fig. 3 right). The number of sections that have unique parameter

values is also calculated and displayed (60 here). The fact that these numbers are so large

indicates that some parameters have heterogeneous values. For a simpler model, the

number of subsets with constant parameters, and the number of sections with unique

parameters, would help identify the combinations of values that are used and also their

spatial distribution. Selecting a parameter from these lists, e.g. eca = 140, highlights the

part of the shape plot where the parameter has that value (Fig. 7).

The final top-level groups are Density Mechanisms and Point Processes, which expand

into text trees and spawn graphs that show the distributions of these items. Homogeneous

Parameters (Fig. 8) lists those parameters that occur with just a single value, whereas

Heterogenous Parameters lists those that take multiple values. Selecting a homogeneous

parameter, such as el_hha2, highlights that part of the shape plot where this parameter

Page 4



Hines et al. NEURON in NeuroInformatics

exists (Fig. 9). If a heterogeneous parameter is selected, such as gkabar_kad, the range

graph shows the overall complexity (Fig. 10), while the ModelView's text and the shape

plot can be used to explore the details of the distribution (Fig. 11)--include the shape plot,

which shows a single section in red, when the corresponding line in the text summary is

highlighted).

The Point Processes group reveals that this model has only one point process: a current

clamp. The ModelView browser shows us that this is located at the soma (Fig. 12).

ModelView in ModelDB

We are developing a ModelView tool that will be incorporated into ModelDB. This

will allow investigators to browse the morphology and biophysical specification for

NEURON models stored in ModelDB.

ModelView and interoperability: future goals

ModelView can output an XML description of the model�s morphology and

biophysical specification. ModelView uses MorphML (6) to describe the morphology of

the cell. We are collaborating with the MorphML group to evolve the MorphML

specification for interoperability. The biophysical XML specification is under development

and we have plans to provide translation tools to previous and developing standards. We

will continue to refine the XML output to make it suitable for communication with

neuroinformatics tools as well as other modeling software such as Catacomb (7) and

GENESIS (8). We will adopt, develop through informal collaboration and communication,

and promote NeuroML (9) (whose goal is to establish standard descriptions of

computational models that are simulator independent) and BrainML (10) (whose goal is to

develop standards in the general description of neuroscience data). We will also attempt to

Page 5



Hines et al. NEURON in NeuroInformatics

implement the tools required to import and export models with a third specification,

CellML (11) (whose purpose is to store and exchange computer-based biological models). 

Summary

ModelView is a powerful model exploration tool that quickly and conveniently

summarizes and displays information about NEURON models that can be hard to find if

one has only the model code to search through. By presenting this information in an

intuitive, browseable textual and graphical format that is easily understood, ModelView

can help an investigator answer questions about a model that would otherwise have been

very tedious to resolve. This tool is capable of further enhancements to match the evolving

capabilities of NEURON and needs of computational neuroscientists. For example, we are

developing XML interoperability tools that will extend ModelView's functionality to

further aid investigators in understanding models, and which will help translate models to

simulator platforms different than the one in which they were originally written.

Acknowledgments

We are grateful for the support from NIH grants NS11613 and 5P01DC004732

(Human Brain Project).

References

1. Migliore, M., Morse, T.M., Davison, A.P., Marenco, L., Shepherd, G.M., Hines, M.L.

(2003) ModelDB: making models publicly accessible to support computational

neuroscience. Neuroinformatics 1, 131-134.

2. ModelDB http://senselab.med.yale.edu/senselab/

3. Hines, M.L. and Carnevale, N.T. (2001) NEURON: a tool for neuroscientists. The

Neuroscientist 7, 123-135.

4. NEURON http://www.neuron.yale.edu/

Page 6



Hines et al. NEURON in NeuroInformatics

5. Poirazi, P., Brannon, T., Mel, B.W. (2003) Arithmetic of subthreshold synaptic

summation in a model CA1 pyramidal cell. Neuron 37, 977-987.

6. MorphML http:www.morphml.org/

7. Catacomb http://www.enorg.org/

8. GENESIS http://www.genesis-sim.org/GENESIS/

9. NeuroML http://www.neuroml.org/

10. BrainML http://brainml.org/

11. CellML http://www.cellml.org/

Page 7



Hines et al. NEURON in NeuroInformatics

Figure 1. Click on Tools / Model View in the NEURON Main Menu

toolbar to bring up a Model View tool.

Figure 2. A newly created ModelView tool displays a top-level summary

of the model. Note: this and many of the following images are cropped to

focus on regions of particular interest.

Page 8



Hines et al. NEURON in NeuroInformatics

Figure 3. Clicking on "*1 real cells" and then on "* root soma[0]" brings

up a shape plot of the model cell (left) and expands the outline.

Figure 4 Clicking on "* 23 inserted mechanisms" expands the outline to

reveal which ion channels the model uses.

Page 9



Hines et al. NEURON in NeuroInformatics

Figure 5. Selecting "* cat" makes the shape plot draw the sections that

contain this current in red, and shows that its conductance density is

nonuniform.

Page 10



Hines et al. NEURON in NeuroInformatics

Figure 6. Clicking on "* 36 gcatbar_cat" brings up a range graph (left)

which uses a color scale and graph to convey a sense of the spatial

distribution of parameter values. Detailed parameter values are provided

in ModelView's expanded outline.

Page 11



Hines et al. NEURON in NeuroInformatics

Figure 7. Browsing the list of subsets with constant parameters allows

the discovery of sections in which a parameter has a particular value, e.g.

"eca = 140" in this case.

Figure 8. Clicking on "Homogeneous Parameters" shows which

parameters have a single value over the entire model cell.

Page 12



Hines et al. NEURON in NeuroInformatics

Figure 9. Selecting "el_hha2 = -70" reveals that this parameter (and the

hha2 mechanism) is restricted to what looks like axonal branches of the

model cell.

Page 13



Hines et al. NEURON in NeuroInformatics

Figure 10. Selecting "* gkabar_kad" from the ModelView's list of

Heterogeneous Parameters brings up a range graph that shows the spatial

distribution of this parameter's values.

Page 14



Hines et al. NEURON in NeuroInformatics

Figure 11. Details of the distribution of inhomogeneous parameters are

easily examined by clicking on individual lines in the ModelView tool.

This figure shows that apical_dendrite[57] (red branch in shape plot) has

5 different values of gkabar_kad along its length.

Figure 12. The red dot in the shape plot marks the location of the

IClamp.

Page 15


