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Abstract
The response of many types of integrate and fire cells to synaptic input can be computed
analytically and their threshold crossing either computed analytically or approximated to high
accuracy via Newton approximation. The NEURON simulation environment simulates networks
of such artificial spiking neurons using discrete event simulation techniques in which
computations are performed only when events are received. Thus computation time is
proportional only to the number of events delivered and is independent of the number of cells or
problem time.
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1. Introduction
The NEURON simulation environment is capable of efficient discrete event simulations of

networks of "artificial" (integrate and fire) spiking neurons, as well as hybrid simulations of nets
whose elements include both artificial neurons and neuron models with membrane currents
governed by voltage-gated ionic conductances. In this paper we discuss how NEURON uses
discrete events to implement the classic single time constant integrate and fire neuron and a cell
with a natural interval between spikes which is modulated by synaptic input. Readers who wish
additional information about the fundamental principles behind the design and implementation of
NEURON, especially with regard to its use for continuous system simulations of empirically-
based models of individual neurons, are referred to [2,3].

NEURON's event delivery system draws on ideas previously used by Destexhe et al. [1] and
Lytton [4] in their models of networks of "biological" neurons. It opens up a large domain of
models in which certain types of "artificial" spiking cells, and networks of them, can be
simulated hundreds of times faster than with numerical integration methods. Discrete event
simulations are possible when all the state variables of a model cell can be computed analytically
from a new set of initial conditions. That is, if an event occurs at time t1, all state variables must

be computable from the state values and time t0 of the previous event. Since computations are

performed only when an event is received, total computation time is proportional to the number
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of events delivered and independent of the number of cells, number of connections, or problem
time. Thus handling 100,000 spikes in one hour for 100 cells takes the same time as handling
100,000 spikes in 1 second for 1 cell.

The portion of the event delivery system used to define connections between cells is the
NetCon (Network Connection) class. A NetCon object typically watches its source cell for the
occurrence of a spike, and then, after some time delay, delivers a weighted synaptic input event
to a target cell. That is, the NetCon object represents the axonal spike propagation and synaptic
delay. A NetCon object can be thought of as a channel on which a stream of events generated at
the source is transmitted to the target. Its implementation takes into account the fact that the
delay between initiation and delivery of events is different for different streams. Consequently
the order in which events are generated by a set of sources is rarely the order in which they are
received by a set of targets. Furthermore the delay may have any value from 0 to 109. 

Handling of incoming events and the calculations necessary to generate outgoing events are
specified in the NET_RECEIVE block of NEURON's model description language NMODL [3].
Artificial cells are implemented as point processes that serve both as targets and sources for
NetCon objects. They are targets because they have a NET_RECEIVE block, which handles
discrete event input streams through one or more NetCon objects. They are also sources because
the NET_RECEIVE block also generates discrete output events which are delivered through one
or more NetCon objects.

Computer code listings have been edited to remove unnecessary detail, with elisions marked
by ellipses and augmented by italicized pseudocode as necessary for the sake of clarity.
Complete source code for all mechanisms described in this paper are included with NEURON,
which is available at no charge from http://www.neuron.yale.edu .

2. IntFire1: a basic integrate and fire model
The simplest integrate and fire mechanism built into NEURON is IntFire1, which has a

"membrane potential" state m which decays toward 0 with time constant τ. 

� dm
dt

�
m � 0 Eq. 1

An input event of weight w adds instantaneously to m, and when m ≥ 1 the cell "fires," producing
an output event and returning m to 0. Negative weights are inhibitory while positive weights are
excitatory. This is analogous to a cell whose membrane time constant τ is very long compared to
the time course of individual synaptic conductance changes. Every synaptic input shifts
membrane potential to a new level in a time that is much shorter than τ, and each cell firing
erases all traces of prior inputs.
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An initial implementation of IntFire1 in NMODL is

...variable declarations...

INITIAL { m = 0    t0 = 0 }

NET_RECEIVE (w) {
    m = m*exp(-(t - t0)/tau)
    m = m + w
    t0 = t
    if (m >= 1) {
        net_event(t)
        m = 0
    }
}

This model lacks the BREAKPOINT and SOLVE blocks, which are used to specify the calculations
that are performed during a time step dt [3]. Instead, calculations only take place when a
NetCon delivers a new event, and these are performed in the NET_RECEIVE block. When a new
event arrives, the present value of m is computed analytically and then incremented by the weight
w of the event (specified by the weight field of the NetCon that delivered the event). In this
example, the value of m is just the exponential decay from its value at the previous event;
therefore the code contains variable t0 which keeps track of the last event time.

If an input event drives m to or above threshold, the net_event(t) statement notifies all
NetCon objects that have this point process as their source that it fired a spike at time t (the
argument to net_event() can be any time ≥ the current time t). Then the cell resets m to 0.
This particular model has no limit to its firing frequency, but elaborating it with a refractory
period is not difficult. However, the system behaves properly with the variable time step method
if a NetCon with delay of 0 and a weight of 1.1 has such an artificial cell as both its source and
target. In that case, events are generated and delivered without time ever advancing.

Note that this artificial cell does not need a threshold test at every dt. Contrast this with the
usual test for membrane potential triggering which is essential at every time step for event
generation with "real" cells. Furthermore the event delivery system only places the earliest event
to be delivered on the event queue. When that time finally arrives, all targets whose NetCons
have the same source and delay get the event delivery, and longer delay streams are put back on
the event queue to await their specific delivery time.

The integration state m is difficult to plot in an understandable manner, since the computer
value of m remains unchanged in the interval between input events regardless of how many
numerical integration steps were performed in that interval. Consequently m always has the value
that was calculated after the last event was received, and a plot of m looks like a staircase with no
apparent decay pattern or indication of what the value of m was just before the event (Fig. 1 left).
This can be partially repaired by providing a function 

FUNCTION M() {
    M = m*exp(-(t - t0)/tau)
}

which returns the present value of the integration state m. This gives nice trajectories for the
fixed step method (Fig. 1 center). However, the natural step with the variable step method is the
interspike interval itself, unless intervening events occur in other cells (e.g. 1 ms before the

Neurocomputing in press.



Hines and Carnevale: Discrete event simulation in the NEURON environment Page 4

second input event in Fig. 1 right). At least the integration step function fadvance() returns 
10-9 ms before and after the event to properly indicate the discontinuity in M.
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Figure 1. Response of an IntFire1 cell with τ = 10 ms to input events arriving at t = 5, 22, and 25 ms
(arrows), each of which has weight w = 0.8. The third input triggers a spike. Left: A plot of m looks like a
staircase because this variable is evaluated only when a new input event arrives. Center: A function can be
included in the mod file that specifies IntFire1 (see text) to give a better indication of the time course of
the integration state m. Plotting this function during a simulation with fixed time steps (dt = 0.025 ms
here) demonstrates the exponential decay of m between input events. Right: In a simulation with variable
time steps, the decay appears to follow a sequence of linear ramps. This is only an artifact of the Graph
tool drawing lines between the points computed analytically at the time steps chosen by the integrator.

3. FreqFire1: synaptic input modifies the interval between spikes.
IntFire1 can be extended to fire at constant frequency (in the absence of synaptic input) by

adding a constant bias current. The equation being solved is now

� dm
dt

�
m � m � Eq. 2

This has analytic solutions for m(t), the firing time (when m(t) = 1), and the value for m∞. These

solutions can be stated in terms of a user-defined parameter invl, interspike interval in the
absence of synaptic input. 

The substantive NMODL code for the model description is

...variable declarations...

INITIAL {
    minf = 1/(1 - exp(-invl/tau))
    m = 0
    t0 = t
    net_send(firetime(), 1)
}
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NET_RECEIVE (w) {
    m = minf + (m - minf)*exp(-(t - t0)/tau)
    t0 = t
    if (flag == 0) {
        m = m + w
        if (m > 1) {
            m = 0
            net_event(t)
        }
        net_move(t+firetime())
    } else {
        net_event(t)
        m = 0
        net_send(firetime(), 1)
    }
}

FUNCTION firetime() { : Note- m < 1 < minf
    firetime = tau*log((minf-m)/(minf - 1))
}

This exploits the notion of a "self event" that can be placed on the event queue for future delivery
to the NET_RECEIVE block, and whose delivery time can be adjusted in response to
computations in that block. The self event is placed on the queue by the net_send statement
with a flag of 1 to distinguish it from external (synaptic) events, which always have a flag
of 0. When a synaptic event arrives, the self event is moved to a new firing time by the
net_move statement. The synaptic event may itself be the trigger for firing, but a returning self
event definitely signifies firing; in either case, the membrane state variable m is reset to 0.

4. Discussion
NEURON's application domain extends beyond continuous system simulations of models of

individual neurons with complex anatomical and biophysical properties, to encompass discrete-
event and hybrid simulations that combine "biological" and "artificial" neuronal models.
Artificial cell models can have quite elaborate behavior. For example, an excitatory input to
NEURON's IntFire4 model generates an exponentially decaying current with time constant τe, an

inhibitory input generates a biexponential (alpha-function-like) current with time constants τ1

and τ2, and the total current is integrated with membrane time constant τm. The four cell states

are analytic, and the threshold crossing time is computed by a sequence of self events, each
triggering a single Newton iteration. Since NEURON's library of mechanisms is extensible
through the NMODL programming language [3], users can add new features to existing
mechanisms, as well as develop new formulations of artificial neuron models that have analytic
solutions. For example, an extension of IntFire1 that implements short-term use-dependent
plasticity as described by [5] is available at ModelDB
(http://senselab.med.yale.edu/senselab/modeldb/).
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